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Abstract. There are several reasons to evaluate a multi-class classifier on other
measures than just error rate. Perhaps most importantly, there can be uncertainty
about the exact context of classifier deployment, requiring the classifier to per-
form well with respect to a variety of contexts. This is commonly achieved by
creating a scoring classifier which outputs posterior class probability estimates.
Proper scoring rules are loss evaluation measures of scoring classifiers which are
minimised at the true posterior probabilities. The well-known decomposition of
the proper scoring rules into calibration loss and refinement loss has facilitated
the development of methods to reduce these losses, thus leading to better classi-
fiers. We propose multiple novel decompositions including one with four terms:
adjustment loss, post-adjustment calibration loss, grouping loss and irreducible
loss. The separation of adjustment loss from calibration loss requires extra as-
sumptions which we prove to be satisfied for the most frequently used proper
scoring rules: Brier score and log-loss. We propose algorithms to perform adjust-
ment as a simpler alternative to calibration.

1 Introduction

Classifier evaluation is crucial for building better classifiers. Selecting the best from a
pool of models requires evaluation of models on either hold-out data or through cross-
validation with respect to some evaluation measure. An obvious choice is the same
evaluation measure which is later going to be relevant in the model deployment context.

However, there are situations where the deployment measure is not necessarily the
best choice, as in model construction by optimisation. Optimisation searches through
the model space to find ways to improve an existing model according to some evalua-
tion measure. If this evaluation measure is simply the error rate, then the model fitness
space becomes discrete in the sense that there are improvements only if some previ-
ously wrongly classified instance crosses the decision boundary. In this case, surrogate
losses such as quadratic loss, hinge loss or log-loss enable SVMs, logistic regression or
boosting to converge towards better models.

The second situation where the choice of evaluation measure is non-trivial is when
the exact context of model deployment is unknown during model training. For instance,
the misclassification costs or deployment class distribution might be unknown. In such
cases a scoring classifier is more versatile than a crisp classifier, because once the de-
ployment context becomes known, the best decision can be made using ROC analysis
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by finding the optimal score threshold. Particularly useful are scoring classifiers which
estimate class probabilities, because these are easiest to adapt to different contexts.

Proper scoring rules are loss measures which give the lowest losses to the ideal
model outputting the true class posterior probabilities. Therefore, using a proper scor-
ing rule as model evaluation measure helps to develop models which are good class
probability estimators, and hence easy to adapt to different contexts. The best known
proper scoring rules are log-loss and Brier score, both of which we are concentrating on
in this paper. These two are also frequently used as surrogate losses for optimisation.

In practice it can be hard to decide which proper scoring rule to use. According to
one view this choice could be based on the assumptions about the probability distribu-
tion over possible deployment contexts. For example, [6] shows that the Brier score can
be derived from a particular additive cost model.

Once the loss measure is fixed, the best model has to be found with respect to that
measure. The decomposition of expected loss corresponding to any proper scoring rule
into calibration loss and refinement loss has facilitated the development of calibration
methods (i.e. calibration loss reduction methods) which have been shown to be bene-
ficial for classification performance [2]. Another decomposition1 splits refinement loss
into uncertainty minus resolution [5,9]. Interestingly, none of the decompositions re-
lates to the loss of the optimal model. This inspires our first novel decomposition of any
proper scoring rule loss into epistemic loss and irreducible (aleatoric2) loss. Irreducible
loss is the loss of the optimal model which outputs the true posterior class probability
given the instance.

For our second decomposition we introduce a novel adjustment loss, which is ex-
tra loss due to the difference between the average of estimated scores and the class
distribution. For both Brier score and log-loss we propose a corresponding adjustment
procedure, which reduces this loss to zero, and hence decreases the overall loss. This
procedure uses only the output scores and class distribution and not the feature values.
Therefore, it can easily be used in any context, whereas a calibration procedure needs
to make extra assumptions about the shape of the calibration map.3

Finally, we propose a four-way decomposition by combining the decompositions
relating to the notions of optimality, calibration and adjustment. The separation of ad-
justment loss from calibration loss is specific to the proper scoring rule (i.e. it relies
on the existence of an adjustment procedure) whereas the remainder of the decompo-
sition applies to any proper scoring rule. The decomposition has the following terms:
adjustment loss (AL), post-adjustment calibration loss (PCL), grouping loss (GL) and
irreducible loss (IL). Grouping loss is the divergence of calibrated probabilities from the
true posterior probabilities and intuitively measures the loss due to the model assigning
the same score to (i.e. grouping together) instances which have different posterior class
probabilities (cf. refinement loss is the loss due to the same scores being assigned to in-
stances from different classes). Grouping loss has earlier been introduced in [7] where

1 Note that the commonly used bias-variance decompositions apply to the loss of a learning
algorithm, whereas we are studying the loss of a particular model.

2 Our terminology here relates to epistemic and aleatoric uncertainty [10].
3 In some literature a classifier has been called calibrated when it is actually only adjusted, a

confusion that we hope to help remove by giving a name for the latter.
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it facilitated the improvement of probability estimation and classification using reliabil-
ity maps, which quantify conditional grouping loss given the model output score. Our
proposed decompositions aim to provide deeper insight into the causes behind losses
and facilitate development of better classification methods.

The structure of the paper is as follows: Section 2 defines proper scoring rules and
introduces notation. Section 3 provides two decompositions using ideal scores and cal-
ibrated scores, respectively. Section 4 introduces the notion of adjustment and a de-
composition using adjusted scores. Section 5 provides two theorems from which all
decompositions follow, and provides terminology for the obtained decomposed losses.
Section 6 describes two proposed algorithms and the results of convergence experi-
ments. Section 7 discusses related work and Section 8 concludes.

2 Proper Scoring Rules

2.1 Scoring Rules

Consider the task of multi-class classification with k classes. We represent the true class
of an instance as a vector y = (y1, . . . ,yk) where y j = 1 if the true class is j, and y j = 0
otherwise. Let p = (p1, . . . , pk) be an estimated class probability vector for an instance,
i.e. p j ≥ 0, j = 1, . . . ,k and ∑

k
j=1 p j = 1. A scoring rule φ(p,y) is a non-negative mea-

sure measuring the goodness of match between the estimated probability vector p and
the true class y.

Two well known scoring rules are log-loss φLL (also known as ignorance score) and
Brier score φBS (also known as squared loss or quadratic score), defined as follows:

φ
LL(p,y) :=− log py log-loss,

φ
BS(p,y) :=

k

∑
i=1

(pi− yi)
2 Brier score4,

where by a slight abuse of notation py denotes p j for j such that y j = 1. Both these rules
are proper in the sense defined in the following subsection. Note that the scoring rules
apply for a single instance, application to a dataset is by averaging across all instances.

2.2 Divergence, Entropy and Properness

Suppose now that the true class y is being sampled from a distribution q over classes
(i.e. q is a probability vector). We denote by s(p,q) the expected score with rule φ on
probability vector p with respect to the class label drawn according to q:

s(p,q) := EY∼qφ(p,Y ) =
k

∑
j=1

φ(p,e j)q j ,

4 This Brier score definition agrees with the original definition by Brier [3]. Since it ranges
between 0 and 2, sometimes half of this quantity is also referred to as Brier score.
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where e j denotes a vector of length k with 1 at position j and 0 everywhere else. We
define divergence d(p,q) of p from q and entropy e(q) of q as follows:

d(p,q) := s(p,q)− s(q,q) , e(q) := s(q,q) .

A scoring rule φ is called proper if the respective divergence is always non-negative,
and strictly proper if additionally d(p,q) = 0 implies p = q. It is easy to show that both
log-loss and Brier score are strictly proper scoring rules.

For the scoring rules φLL and φBS the respective divergence and entropy measures
can easily be shown to be the following:

dLL(p,q) = ∑
k
j=1 q j log q j

p j
KL-divergence;

eLL(q) =−∑
k
j=1 q j logq j information entropy;

dBS(p,q) = ∑
k
j=1(p j−q j)

2 mean squared difference;

eBS(q) = ∑
k
j=1 q j(1−q j) Gini index.

In the particular case where q is equal to the true class label y, divergence is equal to
the proper scoring rule itself, i.e. d(p,y) = φ(p,y). In the following we refer to proper
scoring rules as d(p,y) because this makes the decompositions more intuitive.

2.3 Expected Loss and Empirical Loss

Proper scoring rules define the loss of a class probability estimator on a single instance.
In practice, we are interested in the performance of the model on test data. Once the test
data are fixed and known, the proper scoring rules provide the performance measure as
the average of instance-wise losses across the test data. We refer to this as empirical
loss. If the test data are drawn randomly from a (potentially infinite) labelled instance
space, then the performance measure can be defined as the expected loss on a randomly
drawn labelled instance. We refer to this as expected loss.

Empirical loss can be thought of as a special case of expected loss with uniform
distribution over the test instances and zero probability elsewhere. Indeed, suppose that
the generative model is uniformly randomly picking and outputting one of the test in-
stances. The empirical loss on the (original) test data and the expected loss with this
generative model are then equal. Therefore, all decompositions that we derive for the
expected loss naturally apply to the empirical loss as well, assuming that test data rep-
resent the whole population.

Next we introduce our notation in terms of random variables. Let X be a random
variable (a vector) representing the attributes of a randomly picked instance, and Y =
(Y1, . . . ,Yk) be a random vector specifying the class of that instance, where Yj = 1 if
X is of class j, and Yj = 0 otherwise, for j = 1,2, . . . ,k. Let now f be a fixed scoring
classifier (or class probability estimator), then we denote by S = (S1,S2, . . . ,Sk) = f (X)
the score vector output by the classifier on instance X . Note that S is now a random
vector, as it depends on the random variable X . The expected loss of S with respect to
Y under the proper scoring rule d is E[d(S,Y )].
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Task Model 1 Model 2

i X (i) Y (i)
1 Q(i)

1 S(i)1 A(i)
+,1 A(i)

∗,1 C(i)
1 S(i)1 A(i)

+,1 A(i)
∗,1 C(i)

1
1 (3,2) 1 1.0 0.9 0.925 0.914 0.75 0.9 0.875 0.886 0.75
2 (3,2) 1 1.0 0.9 0.925 0.914 0.75 0.9 0.875 0.886 0.75
3 (3,1) 1 0.5 0.9 0.925 0.914 0.75 0.9 0.875 0.886 0.75
4 (3,1) 0 0.5 0.9 0.925 0.914 0.75 0.9 0.875 0.886 0.75
5 (1,1) 1 0.5 0.3 0.325 0.336 0.50 0.4 0.375 0.364 0.50
6 (1,1) 1 0.5 0.3 0.325 0.336 0.50 0.4 0.375 0.364 0.50
7 (1,1) 0 0.5 0.3 0.325 0.336 0.50 0.4 0.375 0.364 0.50
8 (1,1) 0 0.5 0.3 0.325 0.336 0.50 0.4 0.375 0.364 0.50
mean: 0.625 0.625 0.6 0.625 0.625 0.625 0.65 0.625 0.625 0.625

LL: 0 0.520 0.717 0.732 0.715 0.628 0.684 0.673 0.683 0.628
BS: 0 0.375 0.5 0.499 0.491 0.438 0.47 0.469 0.474 0.438

Table 1. Example dataset with 2 classes, with information shown for class 1 only. The score for
class 1 is S1 = 0.3X1 by Model 1 and S1 = 0.25X1+0.15 by Model 2, whereas the optimal model
is Q1 = 0.5X2 (or any other model which outputs 1 for first two instances and 0.5 for the rest).
Columns A+,1, A∗,1 and C1 represent additively adjusted, multiplicatively adjusted, and calibrated
scores, respectively. The average of each column is presented (mean), as well as log-loss (LL)
and Brier score (BS) with respect to the true labels (Y1 = 1 stands for class 1).

Example 1. Consider a binary (k = 2) classification test set of 8 instances with 2 fea-
tures, as shown in column X (i) of Table 1. Suppose the instances with indices 1,2,3,5,6
are positives (class 1) and the rest are negatives (class 2). This information is repre-
sented in column Y (i)

1 , where 1 means ’class 1’ and 0 means ’not class 1’.
Suppose we have two models predicting both 0.9 as the probability of class 1 for the

first 4 instances, but differ in probability estimates for the remaining 4 instances with 0.3
predicted by the first and 0.4 by the second model. This information is represented in the
columns labelled S(i)1 for both models. The second model is better according to both log-
loss (0.684< 0.717) and Brier score (0.47< 0.5). These can equivalently be considered
either as empirical losses (as they are averages over 8 instances) or as expected losses
(if the generative model picks one of the 8 instances uniformly randomly). The meaning
of the remaining columns in Table 1 will become clear in the following sections.

3 Decompositions with Ideal Scores and Calibrated Scores

In this paper, all decompositions of proper scoring rules are built on procedures to map
the estimated scores to new scores such that the loss is guaranteed to decrease. We start
from an idealistic procedure requiring an optimal model and move towards realistic
procedures.

3.1 Ideal Scores Q and the Decomposition L = EL+ IL

Our first novel decomposition is determined by a procedure which changes the esti-
mated scores into true posterior class probabilities (which is clearly impossible to do
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in practice). We denote the true posterior probability vector by Q = (Q1,Q2, . . . ,Qk)
where Q j := E[Yj|X ]. Variable Q j can be interpreted as the true proportion of class j
among the instances with feature values X , and hence it is independent of the model.
For our running example in Table 1 the true posterior probabilities for class 1 are given
in column Q(i)

1 .
Our decomposition states that the expected loss corresponding to any proper scoring

rule is the sum of expected divergence of S from Q and the expected divergence of Q
from Y :

E[d(S,Y )] = E[d(S,Q)]+E[d(Q,Y )] .

This can be proved as a direct corollary of Theorem 2 in Section 5. As all these expected
divergences are non-negative (due to properness of the scoring rule) and Q is the same
regardless of the scoring model S, it immediately follows that S := Q is the optimal
model with respect to any proper scoring rule (it is a model because it is a function of
X). This justifies the following terminology:

– Epistemic Loss EL = E[d(S,Q)] is the extra loss due to the model not being opti-
mal, and equals zero if and only if the model is optimal. The term relates to epis-
temic uncertainty (as opposed to aleatoric uncertainty) [10] and is due to our mis-
treatment of the evidence X with respect to the ideal model.

– Irreducible Loss IL =E[d(Q,Y )] is the loss due to inherent uncertainty in the clas-
sification task, the loss which is the same for all models. This type of uncertainty is
called aleatoric [10] so the loss could also be called aleatoric loss. It is the loss of
the optimal model and equals zero only if the attributes of the instance X provide
enough information to uniquely determine the right label Y (with probability 1).

For our running example the epistemic log-loss ELLL for the two models is 0.198 and
0.164 (not shown in Table 1) and the (model-independent) irreducible log-loss is ILLL =
0.520, which (as expected) sum up to the total expected log-loss of 0.717 and 0.684,
respectively (with the rounding effect in the last digit of 0.717). For Brier score the
decomposition for the two models is 0.5 = 0.125+ 0.375 and 0.47 = 0.095+ 0.375,
respectively.

3.2 Calibrated Scores C and the Decomposition L =CL+RL

The second, well-known decomposition [5] is determined by a procedure which changes
the estimated scores into calibrated probabilities. We denote the calibrated probability
vector by C = (C1,C2, . . . ,Ck) where C j := E[Yj|S]. Variable C j can be interpreted as
the true proportion of class j among the instances for which the model has output the
same estimate S, and hence calibration is model-dependent. For our running example in
Table 1 the calibrated probabilities of class 1 for the two models are given in columns
C(i)

1 . Note that the columns for the two models are identical. This is only because for
any two instances in our example, the first model gives them the same estimate if and
only if the second model does so.
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The standard calibration-refinement decomposition [4] states5 that the expected loss
according to any proper scoring rule is the sum of expected divergence of S from C and
the expected divergence of C from Y :

E[d(S,Y )] = E[d(S,C)]+E[d(C,Y )] .

This is another direct corollary of Theorem 2 in Section 5. The standard terminology is
as follows:

– Calibration Loss CL = E[d(S,C)] is the loss due to the difference between the
model output score S and the proportion of positives among instances with the
same output (calibrated score).

– Refinement Loss RL = E[d(C,Y )] is the loss due to the presence of instances from
multiple classes among the instances with the same estimate S.

For our running example the calibration loss for Brier score CLBS for the two models
is 0.062 and 0.033 (not shown in Table 1) and the refinement loss is for both equal
to RLBS = 0.438, which sum up to the total expected Brier scores of 0.5 and 0.47,
respectively (with the rounding effect in the last digit, we omit this comment in the
following cases). For log-loss the decomposition for the two models is 0.717 = 0.090+
0.628 and 0.684 = 0.056+0.628, respectively.

In practice, calibration has proved to be an efficient way of decreasing proper scor-
ing rule loss [2]. Calibrating a model means learning a calibration mapping from the
model output scores to the respective calibrated probability scores. Calibration is sim-
ple to perform if the model has only a few possible output scores, each covered by many
training examples. Then the empirical class distribution among training instances with
the same output scores can be used as calibrated score vector. However, in general, there
might be a single or even no training instances with the same score vector as the model
outputs on a test instance. Then the calibration procedure needs to make additional as-
sumptions (inductive bias) about the shape of the calibration map, such as monotonicity
and smoothness.

Regardless of the method, calibration is almost never perfect. Even if perfectly cal-
ibrated on the training data, the model can suffer some calibration loss on test data. In
the next section we propose an adjustment procedure as a precursor of calibration. Ad-
justment does not make any additional assumptions and is guaranteed to decrease loss
if the test class distribution is known exactly.

4 Adjusted Scores A and the Decomposition L = AL+PL

Ideal scores cannot be obtained in practice, and calibrated scores are hard to obtain, re-
quiring extra assumptions about the shape of the calibration map. Here we propose two
procedures which take as input the estimated scores and output adjusted scores such
that the mean matches with the given target class distribution. As opposed to calibra-
tion, no labels are required for learning how to adjust, only the scores and target class

5 Actually, in [4] the calibration-refinement decomposition is stated as E[s(S,Y )] =E[d(S,C)]+
E[e(C)] but this can easily be shown to be equivalent to our statement.
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distribution are needed. We prove that additive adjustment is guaranteed to decrease
Brier score, and multiplicative adjustment is guaranteed to decrease log-loss. In both
cases we can decompose the expected loss in a novel way.

4.1 Adjustment

Suppose we are given the class distribution of the test data, represented as a vector π of
length k, with non-negative entries and adding up to 1. It turns out that if the average
of the model output scores on the test data does not match with the given distribution
then for both log-loss and Brier score it is possible to adjust the scores with guaranteed
reduction of loss. First we define what we mean by adjusted scores.

Definition 1. Let π be a class distribution with k classes and A be a random real-valued
vector of length k. If E[A j] = π j for j = 1, . . . ,k, then we say that A is adjusted to the
class distribution π .

If the scores are not adjusted, then they can be adjusted using one of the two fol-
lowing procedures.

Additive (score) adjustment is a procedure applying the following function α+:

α+(s) = (s1 +b1, . . . ,sk +bk) ∀s ∈ Rk ,

where b j = π j−E[S j], for j = 1, . . . ,k. Hence, the function is different depending on
what the model output scores and class distribution are. It is easy to prove that the scores
α+(S) are adjusted: E[S j +b j] = E[S j]+b j = E[S j]+π j−E[S j] = π j, for j = 1, . . . ,k.

Multiplicative (score) adjustment is a procedure applying the function α∗:

α∗(s) =

(
w1s1

∑
k
j=1 w js j

, . . . ,
wksk

∑
k
j=1 w js j

)
∀s ∈ Rk ,

where w j are suitably chosen non-negative weights such that α∗(S) is adjusted to π . It
is not obvious that such weights exist because of the required renormalisation, but the
following theorem gives this guarantee.

Theorem 1 (Existence of weights for multiplicative adjustment). Let π be a class
distribution with k≥ 2 classes and S be a random positive real vector of length k. Then

there exist non-negative weights w1, . . . ,wk such that E
[

wiSi
∑

k
j=1 w jS j

]
= πi for i = 1, . . . ,k.

Proof. All the proofs are in the Appendix and the extended proofs are available at
http://www.cs.bris.ac.uk/˜flach/Kull_Flach_ECMLPKDD2015_Supplementary.pdf.

For our running example in Table 1 the additively adjusted and multiplicatively
adjusted scores for class 1 are shown in columns A(i)

+,1 and A(i)
∗,1, respectively. The shift

b for additive adjustment was (+0.025,−0.025) for Model 1 and (−0.025,+0.025)
for Model 2. The weights w for multiplicative adjustment were (1.18,1) for Model 1
and (1,1.16) for Model 2. For example, for Model 1 the scores (0.9,0.1) (of first four
instances) become (1.062,0.1) after weighting and (0.914,0.086) after renormalising
(dividing by 1.062+0.1= 1.162). The average score for class 1 becomes 0.625 for both
additive and multiplicative adjustment and both models, confirming the correctness of
these procedures.

http://www.cs.bris.ac.uk/~flach/Kull_Flach_ECMLPKDD2015_Supplementary.pdf
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4.2 The Right Adjustment Procedure Guarantees Decreased Loss
The existence of multiple adjustment procedures raises a question of which one to use.
As seen from the losses after adjustment in Table 1, multiplicative adjustment achieves
a lower loss for Model 1 and additive adjustment achieves a lower loss for Model 2, for
both log-loss and Brier score. This shows that neither procedure is better than the other
across all models.

Further inspection of Table 1 shows that for Model 1 the log-loss increased after ad-
ditive adjustment and for Model 2 the Brier score increased after multiplicative adjust-
ment. Interestingly, we can guarantee decreased loss if the right adjustment procedure
is used: multiplicative adjustment always decreases log-loss, and additive adjustment
always decreases Brier score. Of course, the exception is when the scores are already
adjusted, in which case there is no change in the loss. The guarantee is due to the fol-
lowing novel loss-specific decompositions (and non-negativity of divergence):

E[dBS(S,Y )] = E[dBS(S,A+)]+E[dBS(A+,Y )] ,

E[dLL(S,Y )] = E[dLL(S,A∗)]+E[dLL(A∗,Y )] ,

where A+ = α+(S) and A∗ = α∗(S) are obtained from the scores S using additive and
multiplicative adjustment, respectively. Note that the additive adjustment procedure can
produce values out of the range [0,1] but Brier score is defined for these as well. The
decompositions follow from Theorem 4 in Section 5, which provides a unified decom-
position:

E[d(S,Y )] = E[d(S,A)]+E[d(A,Y )]

under an extra assumption which links the adjustment method and the loss measure.
Due to this unification we propose the following terminology for the losses:

– Adjustment Loss AL = E[d(S,A)] is the loss due to the difference between the
mean model output E[S] and the overall class distribution π := E[Y ]. This loss is
zero if the scores are adjusted.

– Post-adjustment Loss PL = E[d(A,Y )] is the loss after adjusting the model output
with the method corresponding to the loss measure.

For our running example the adjustment log-loss ALLL for the two models is 0.0021
and 0.0019 (not shown in Table 1) and the respective post-adjustment losses PLLL are
0.7154 and 0.6822, which sum up to the total expected log-loss of 0.7175 and 0.6841,
respectively. For Brier score the decomposition for the two models is 0.5 = 0.00125+
0.49875 and 0.47 = 0.00125+0.46875, respectively.

In practice, the class distribution is usually not given, and has to be estimated from
training data. Therefore, if the difference between the average output scores and class
distribution is small (i.e. adjustment loss is small), then the benefit of adjustment might
be subsumed by class distribution estimation errors. Experiments about this remain as
future work.

So far we have given three different two-term decompositions of expected loss:
epistemic loss plus irreducible loss, calibration loss plus refinement loss, and adjustment
loss plus post-adjustment loss. In the following section we show that these can all be
obtained from a single four-term decomposition, and provide more terminology and
intuition.



10 Meelis Kull and Peter Flach

5 Decomposition Theorems and Terminology

In the previous sections we had the following decompositions of expected loss using a
proper scoring rule (with extra assumptions for the last decomposition):

E[d(S,Y )]=E[d(S,Q)]+E[d(Q,Y )] = E[d(S,C)]+E[d(C,Y )] = E[d(S,A)]+E[d(A,Y )]

All these decompositions follow a pattern E[d(S,Y )] =E[d(S,V )]+E[d(V,Y )] for some
random variable V . In this section we generalise further, and introduce decompositions
E[d(V1,V3)] =E[d(V1,V2)]+E[d(V2,V3)] for some random variables V1,V2,V3. The ran-
dom variables will always be from the list S,A,C,Q,Y , and always in the same order.
Actually, we will prove that the decomposition holds for any subset of 3 variables out
of these 5, as long as the ordering is preserved. For decompositions involving adjusted
scores A there is an extra assumption required, this is introduced in Section 5.2. First
we provide decompositions without A.

5.1 Decompositions with S,C,Q,Y

Theorem 2. Let (X ,Y ) be random variables representing features and labels for a k-
class classification task, f be a scoring classifier, and d be the divergence function of
a strictly proper scoring rule. Denote S = f (X), C j = E[Yj|S], and Q j = E[Yj|X ] for
j = 1, . . . ,k. Then for any subsequence V1,V2,V3 of the random variables S,C,Q,Y the
following holds:

E[d(V1,V3)] = E[d(V1,V2)]+E[d(V2,V3)] .

This theorem proves the decompositions of Section 3 but adds two more:

E[d(S,Q)] = E[d(S,C)]+E[d(C,Q)] , EL =CL+GL ;
E[d(C,Y )] = E[d(C,Q)]+E[d(Q,Y )] , RL = GL+ IL .

These decompositions introduce the following new quantity:

– Grouping Loss GL = E[d(C,Q)] is the loss due to many instances being grouped
under the same estimate S while having different true posterior probabilities Q.

The above decompositions together imply the following three-term decomposition:

E[d(S,Y )] = E[d(S,C)]+E[d(C,Q)]+E[d(Q,Y )] , L =CL+GL+ IL .

5.2 Decompositions with S,A,C,Q,Y and Terminology

As discussed in Section 4, the decomposition of expected loss into adjustment loss
and post-adjustment loss requires a link between the adjustment procedure and loss
measure. The following definition presents the required link formally.
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Definition 2. Let (X ,Y ) be random variables representing features and labels for a k-
class classification task, f be a scoring classifier, and φ be a strictly proper scoring
rule. Denote S = f (X). Let α = (α1, . . . ,αk) be a vector function with α j : R→ R
and let us denote A = (A1, . . . ,Ak) with A j = α j(S). We say that α provides coherent
adjustment of S for proper scoring rule d if A is adjusted to the class distribution E[Y ]
and the following quantity is a constant (not a random variable), depending on i, j only:

φ(A,ei)−φ(A,e j)−φ(S,ei)+φ(S,e j) = consti, j (1)

where em is a vector of length k with 1 at position m and 0 everywhere else.

Intuitively, (1) requires α to apply in some sense the same adjustment to different
scores, with respect to the scoring rule. In Appendix we prove the following theorem:

Theorem 3. Additive adjustment is coherent with Brier score and multiplicative ad-
justment is coherent with log-loss.

Now we are ready to present our most general decomposition theorem:

Theorem 4. Let (X ,Y ) be random variables representing features and labels for a k-
class classification task, f be a scoring classifier, and d be the divergence function
of a strictly proper scoring rule. Denote S = f (X), C j = E[Yj|S], and Q j = E[Yj|X ]
for j = 1, . . . ,k. Let A = α(S) where α provides coherent adjustment of S for proper
scoring rule d. Then for any subsequence V1,V2,V3 of the random variables S,A,C,Q,Y
the following holds:

E[d(V1,V3)] = E[d(V1,V2)]+E[d(V2,V3)] .

Note that coherent adjustment might not exist for all proper scoring rules: then the
decompositions involving A do not work, falling back to Theorem 2. Theorem 4 proves
the decompositions in Section 4 and also provides the following decompositions:

E[d(S,C)] = E[d(S,A)]+E[d(A,C)] , CL = AL+PCL ;
E[d(S,Q)] = E[d(S,A)]+E[d(A,Q)] , EL = AL+PEL ;
E[d(A,Q)] = E[d(A,C)]+E[d(C,Q)] , PEL = PCL+GL ;
E[d(A,Y )] = E[d(A,Q)]+E[d(Q,Y )] , PL = PEL+ IL ,

which introduce new quantities PCL and PEL.

– Post-adjustment Calibration Loss PCL=E[d(A,C)] is the loss due to the remain-
ing calibration loss after perfect adjustment.

– Post-adjustment Epistemic Loss PEL = E[d(A,Q)] is the loss due to the remain-
ing epistemic loss after perfect adjustment.

Now we have introduced all pairwise divergences between two variables from the or-
dered list S,A,C,Q,Y . Table 2 summarises our proposed terminology.

A direct corollary from Theorem 4 is that if we choose 4 or 5 out of 5 variables
from S,A,C,Q,Y , then we get a 3- or 4-term decomposition, respectively. In particular,
the full 4-term decomposition involving all 5 variables is as follows:

E[d(S,Y )]=E[d(S,A)]+E[d(A,C)]+E[d(C,Q)]+E[d(Q,Y )] , L=AL+PCL+GL+IL .
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Definition Visual Name Description
L E[d(S,Y )] S...Y Loss total expected loss
AL E[d(S,A)] SA... Adjustment Loss loss due to lack of adjustment
PCL E[d(A,C)] .AC.. Post-adjustment Calibration Loss calibration loss after adjustment
GL E[d(C,Q)] ..CQ. Grouping Loss loss due to grouping
IL E[d(Q,Y )] ...QY Irreducible Loss loss of the optimal model
CL E[d(S,C)] S.C.. Calibration Loss loss due to lack of calibration
PEL E[d(A,Q)] .A.Q. Post-adjustment Epistemic Loss epistemic loss after adjustment
RL E[d(C,Y )] ..C.Y Refinement Loss loss after calibration
EL E[d(S,Q)] S..Q. Epistemic Loss loss due to non-optimal model
PL E[d(A,Y )] .A..Y Post-adjustment Loss loss after adjustment

Table 2. Proposed terminology

S A C Q Y
S 0 AL CL EL L
A 0 PCL PEL PL
C 0 GL RL
Q 0 IL
Y 0

LL S A∗ C Q Y
S 0 0.002 0.090 0.198 0.717
A∗ 0 0.088 0.196 0.715
C 0 0.108 0.628
Q 0 0.520
Y 0

BS S A+ C Q Y
S 0 0.001 0.062 0.125 0.5
A+ 0 0.061 0.124 0.499
C 0 0.062 0.438
Q 0 0.375
Y 0

Table 3. The decomposed losses (left) and their values for model 1 of the running example using
log-loss (middle) and Brier score (right).

Table 3 provides numerical values for all 10 losses of Table 2 for Model 1 in our running
example data (Table 1). The 4-term decomposition proves that the numbers right above
the main diagonal (AL, PCL, GL, IL) add up to the total loss at the top right corner
(L). All other decompositions can be checked numerically from the table (taking into
account the accumulating rounding errors).

6 Algorithms and Experiments

We have proposed two new procedures in the paper: additive and multiplicative ad-
justment. Here we provide algorithms to perform these procedures. Both procedures
first require estimation of the parameter vectors: b for additive and w for multiplicative
adjustment. If the test instances are all given together in batch, then the scores of the
model on test data can be used to estimate these parameter vectors. Otherwise, these
need to be estimated on training (or validation) data.

Additive adjustment is algorithmically very easy. Parameter b j is the difference of
proportion π j of class j and the mean E[S j], calculated as the average output score for
class j over all instances. This is exact if test data are given in batch and π j is the true
proportion, and it is approximate if π j is estimated from training data. Finally, adjusted
scores can be calculated by adding b to the model output scores, for each test instance.

For multiplicative adjustment the hard part is to obtain the parameter (weight) vec-
tor w, whereas applying adjustment using the weights is straightforward. The weight
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k = 2 k = 3 k = 4 k = 5 k = 10 k = 20 k = 30 k = 50
n = 10 1.00 (21) 3.66 (9) 3.95 (3) 3.97 (3) 3.88 (3) 3.66 (4) 3.49 (23) 3.25 (99)
n = 100 1.00 (4) 3.64 (2) 3.95 (2) 3.97 (0) 3.86 (1) 3.63 (0) 3.44 (2) 3.22 (48)
n = 1000 1.00 (6) 3.64 (0) 3.95 (1) 3.96 (0) 3.85 (0) 3.62 (0) 3.44 (4) 3.22 (43)

Table 4. Average number of rounds to convergence of multiplicative adjustment across 10000
synthetic tasks with k classes and n instances. The number in parentheses shows the count of
failures to converge out of 10000.

vector w can be obtained by the coordinate descent optimisation algorithm where for
coordinate j the task is to minimise the difference between E[w js j/∑

k
i=1 wisi] and π j,

by changing only w j. The minimisation in one coordinate can be done by binary search,
since the expected value is monotonically increasing with respect to w j. It is clear that if
coordinate descent algorithm converges, then the obtained w is the right one. However,
the algorithm can fail to converge.

We have performed experiments with synthetic tasks with k = 2,3,4,5,10,20,50
classes and n= 10,100,1000 instances to check convergence. Each task is a pair of a n×
k model score matrix and class distribution vector of length k, all filled with uniformly
random entries between 0 and 1, and each row is normalised to add up to 1. Table 4
reports the number of cycles through the coordinates to convergence, averaged over
10000 tasks for each k,n pair. As expected, the results have almost no dependence on the
number of instances. The maximal number of rounds to convergence was 6. However,
on average in 10 out of 10000 times there was no convergence. Further improvement of
this result remains as future work.

7 Related Work

Proper scoring rules have a long history of research, with Brier score introduced in 1950
in the context of weather forecasting [3], and the general presentation of proper scoring
rules soon after, see e.g. [11]. The decomposition of Brier score into calibration and re-
finement loss (which were back then called reliability and resolution) was introduced by
Murphy [8] and was generalised for proper scoring rules by DeGroot and Fienberg [5].
The decompositions with three terms were introduced by Murphy [9] with uncertainty,
reliability and resolution (Murphy reused the same name for a different quantity), later
generalised to all proper scoring rules as well [4]. In our notation these can be stated
as E[d(S,Y )] = REL+UNC−RES = E[d(S,C)] +E[d(π,Y )]−E[d(π,C)]. This can
easily be proved by taking into account that the last term can be viewed as calibration
loss for constant estimator π but segmented in the same way as S.

In machine learning proper scoring rules are often treated as surrogate loss func-
tions, which are used instead of the 0-1 loss to facilitate optimisation [1]. An important
question in practice is which proper scoring rule to use. One possible viewpoint is to
assume a particular distribution over anticipated deployment contexts and derive the
expected loss from that assumption. Hernández-Orallo et al. have shown that the Brier
score can be derived from a particular additive cost model [6].
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8 Conclusions

This paper proposes novel decompositions of proper scoring rules. All presented de-
compositions are sums of expected divergences between original scores S, adjusted
scores A, calibrated scores C, true posterior probabilities Q and true labels Y . Each such
divergence stands for one part of the total expected loss. Calibration and refinement
loss are known losses of this form, the paper proposes names for the other 7 losses and
provides underlying intuition. In particular, we have introduced adjustment loss, which
arises from the difference between mean estimated scores and true class distribution.
While it is a part of calibration loss, it is easier to eliminate or decrease than calibra-
tion loss. We have proposed first algorithms for additive and multiplicative adjustment,
which we prove to be coherent with (decomposing) Brier score and log-loss, respec-
tively. More algorithm development is needed for multiplicative adjustment, as the cur-
rent algorithm can sometimes fail to converge. An open question is whether there are
other, potentially better coherent adjustment procedures for these losses. We hope that
the proposed decompositions provide deeper insight into the causes behind losses and
facilitate development of better classification methods, as knowledge about calibration
loss has already delivered several calibration methods, see e.g. [2].
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Appendix: Proofs of the Theorems

Here we prove the theorems presented in the paper, extended proofs are available at
http://www.cs.bris.ac.uk/˜flach/Kull_Flach_ECMLPKDD2015_Supplementary.pdf.

Proof of Theorem 1: If there are any zeros in the vector π , then we can set the
respective positions in the weight vector also to zero and solve the problem with the
remaining classes. Therefore, from now on we assume that all entries in π are positive.

Let W denote the set of all non-negative (weight) vectors of length k with at least one
non-zero component. We introduce functions ti :W→R with ti(w)=E[wiSi/∑

k
j=1 w jS j].

Then we need to find w∗ such that ti(w∗) = πi for i = 1, . . . ,k. For this we prove the
existence of increasingly better functions h0,h1, . . . ,hk−1 : W→W such that for m =
0, . . . ,k− 1 the function hm satisfies ti(hm(w)) = πi for i = 1, . . . ,m for any w. Then
w∗ = hk−1(w) is the desired solution, where w ∈W is any weight vector, such as the
vector of all ones. Indeed, it satisfies ti(w∗) = πi for i = 1, . . . ,k−1 and hence for i = k.

We choose h0 to be the identity function and prove the existence of other functions
hm by induction. Let hm for m < k− 1 be such that for any w the vector hm(w) does
not differ from w in positions m+ 1, . . . ,k and ti(hm(w)) = πi for i = 1, . . . ,m. For a
fixed w it is now sufficient to prove the existence of w′ such that it does not differ
from w in positions m+2, . . . ,k and ti(w′) = πi for i = 1, . . . ,m+1. We search for such
w′ among the vectors hm(w[m+ 1 : x]) with x ∈ [0,∞) where w[m+ 1 : x] denotes the
vector w with the element at position m+ 1 changed into x. The chosen form of w′

guarantees that it does not differ from w in positions m+ 2, . . . ,k and ti(w′) = πi for
i = 1, . . . ,m. It only remains to choose x such that tm+1(w′) = πm+1. For this we note
that for x= 0 we have tm+1(hm(w[m+1 : 0])) = 0 because the weight at position m+1 is
zero. In the limit process x→ ∞ we have tm+1(hm(w[m+1 : x]))→ 1−∑

m
i=1 πi because

the weight x at position m+ 1 will dominate over weights at m+ 2, . . . ,k, whereas the
weights at 1, . . . ,m ensure that ti(hm(w[m+ 1 : x])) = πi for i = 1, . . . ,m. Since 0 <
πm+1 < 1−∑

m
i=1 πi then according to the intermediate value theorem there exists x such

that tm+1(hm(w[m+1 : x])) = πm+1. By this we have proved the existence of a suitable
function hm+1, proving the step of induction, which concludes the proof. ut

Lemma 1. Let V1,V2,V3,W be real-valued random vectors with length k where V2, j =
E[V3, j|W ] for j = 1, . . . ,k, and V1 is functionally dependent on W. If d is divergence of
a proper scoring rule, then E[d(V1,V3)] = E[d(V1,V2)]+E[d(V2,V3)].

Proof. Due to the law of total expectation it is enough to prove that E[d(V1,V3)|W ] =
E[d(V1,V2)|W ]+E[d(V2,V3)|W ]. After expressing each d as a difference of two s terms,
all obtained terms are sums over j = 1, . . . ,k and it is enough to prove that for each
j the equality holds. Also, as we are conditioning on W , all terms that do not in-
volve V3 are constants with respect to conditional expectation. Therefore, we need

http://www.cs.bris.ac.uk/~flach/Kull_Flach_ECMLPKDD2015_Supplementary.pdf
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to prove that φ(V1,e j)E[V3, j|W ]−E[s(V3,V3)|W ] equals φ(V1,e j)V2, j−φ(V2,e j)V2, j +
φ(V2,e j)E[V3, j|W ]−E[s(V3,V3)|W ]. This holds due to E[V3, j|W ] =V2, j. ut

Proof of Theorem 2: We consider the following two possibilities:
1. V2 = C. Let us take W = S in Lemma 1. Then V1 = S and it is functionally de-

pendent on itself, W . Also, V2, j = E[V3, j|W ] regardless of whether V3 = Y or V3 = Q
because C j = E[Yj|S] = E[E[Yj|X ,S]|S] = E[Q j|S], where the second equality is due to
the law of iterated expectations. The result now follows from Lemma 1.

2. V2 = Q. Then V3 = Y and the result follows from Lemma 1 with W = X because
V2, j = Q j = E[Yj|X ] = E[V3, j|W ] and both candidates S and C for V1 are functionally
dependent on W = X . ut

Proof of Theorem 3: In Section 4 we proved that both methods provide adjusted
scores, so we only need to prove Eq.(1). For log-loss we need to prove that − logAi +
logA j + logSi− logS j is a constant. For this it is enough to show that (A j/Ai)/(S j/Si)
is constant. According to the definition of multiplicative adjustment this quantity equals
((w jS j)/(wiSi))/(S j/Si) = w j/wi which is a constant, proving that multiplicative ad-
justment is coherent with log-loss. For Brier score we need to prove that

k

∑
m=1

(Am−δmi)
2−

k

∑
m=1

(Am−δm j)
2−

k

∑
m=1

(Sm−δmi)
2 +

k

∑
m=1

(Sm−δm j)
2 = consti j ,

where δmi is 1 if m = i and 0 otherwise. For m /∈ {i, j} the respective terms in the
first and second sums and in the third and fourth sums are equal and therefore cancel
each other. For m = i the respective terms together give (Ai−1)2−A2

i − (Si−1)2 +S2
i ,

for additive adjustment this equals to the constant −2bi due to Ai = Si + bi. A similar
argument holds for m = j and as a result we have proved that the requirement (1) holds
and additive adjustment is coherent with Brier score. ut

Proof of Theorem 4: If none of V1,V2,V3 is A, then the result follows from Theo-
rem 2. If V1 = A, then the result follows from Theorem 2 with f NEW = α ◦ f because
then SNEW = A, CNEW =C, QNEW = Q. It remains to prove the result for the case where
V1 = S and V2 =A. Denote β j = φ(A,e1)−φ(A,e j)−φ(S,e1)+φ(S,e j) for j = 1, . . . ,k,
then β j are all constants. Now it is enough to prove that the following quantity is zero:

E[d(S,V3)]−E[d(S,A)]−E[d(A,V3)] =

=E
[ k

∑
j=1

(
φ(S,e j)V3, j−φ(S,e j)A j +φ(A,e j)A j−φ(A,e j)V3, j

)
−s(V3,V3)+s(V3,V3)

]
=E
[ k

∑
j=1

(
φ(S,e j)−φ(A,e j)

)(
V3, j−A j

)]
=E
[ k

∑
j=1

(
β j +φ(S,e1)−φ(A,e1)

)(
V3, j−A j

)]
=

k

∑
j=1

β j

(
E[V3, j]−E[A j]

)
+E
[(

φ(S,e1)−φ(A,e1)
)( k

∑
j=1

V3, j−
k

∑
j=1

A j

)]
.

The first term is equal to zero regardless of whether V3 is Y or Q or C since E[A j] =
E[Yj] = E[Q j] = E[C j]. The second term is equal to zero because both V3, j and A j for
j = 1, . . . ,k add up to 1. ut
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