20 research outputs found

    Sensitivity of commercial pumpkin yield to potential decline among different groups of pollinating bees

    Get PDF
    This is the final version. Available on open access from the Royal Society via the DOI in this recordData accessibility: All data and code to reproduce this analysis are available from the Dryad Digital Repository: (http://dx.doi.org/10.5061/dryad.fh078)The yield of animal-pollinated crops is threatened by bee declines, but its precise sensitivity is poorly known. We therefore determined the yield dependence of Hokkaido pumpkin in Germany on insect pollination by quantifying: (i) the relationship between pollen receipt and fruit set and (ii) the cumulative pollen deposition of each pollinator group. We found that approximately 2500 pollen grains per flower were needed to maximize fruit set. At the measured rates of flower visitation, we estimated that bumblebees (21 visits/flower lifetime, 864 grains/visit) or honeybees (123 visits, 260 grains) could individually achieve maximum crop yield, whereas halictid bees are ineffective (11 visits, 16 grains). The pollinator fauna was capable of delivering 20 times the necessary amount of pollen. We therefore estimate that pumpkin yield was not pollination-limited in our study region and that it is currently fairly resilient to single declines of honeybees or wild bumblebees.This work is part of the QuESSA project and has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 311879

    Dominance of cropland reduces the pollen deposition from bumble bees

    Get PDF
    This is the final version. Available on open access from Springer Nature via the DOI in this recordIntensive agricultural landscapes can be hostile for bees due to a lack of floral and nesting resources, and due to management-related stress such as pesticide use and soil tillage. This threatens the pollination services that bees deliver to insect-pollinated crops. We studied the effects of farming intensity (organic vs. conventional, number of insecticide applications) and availability of semi-natural habitats at the field and landscape scale on pollinator visits and pollen delivery to pumpkin in Germany. We found that wild bumble bees were the key pollinators of pumpkin in terms of pollen delivery, despite fivefold higher visitation frequency of honey bees. Critically, we observed that the area of cropland had stronger effects on bees' pollen deposition than the area of seminatural habitats. Specifically, a 10% increase of the proportion of cropland reduced pollen delivery by 7%. Pumpkin provides a striking example for a key role of wild pollinators in crop pollination even at high numerical dominance of honey bees. In addition, our findings suggest that habitat conversion to agricultural land is a driver of deteriorating pollination. This underlines the importance to maintain sufficient areas of non-crop habitats in agricultural landscapes.This work is part of the QuESSA project and has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 311879

    Approaches to identify the value of seminatural habitats for conservation biological control

    Get PDF
    Invertebrates perform many vital functions in agricultural production, but many taxa are in decline, including pest natural enemies. Action is needed to increase their abundance if more sustainable agricultural systems are to be achieved. Conservation biological control (CBC) is a key component of integrated pest management yet has failed to be widely adopted in mainstream agriculture. Approaches to improving conservation biological control have been largely ad hoc. Two approaches are described to improve this process, one based upon pest natural enemy ecology and resource provision while the other focusses on the ecosystem service delivery using the QuESSA (Quantification of Ecological Services for Sustainable Agriculture) project as an example. In this project, a predictive scoring system was developed to show the potential of five seminatural habitat categories to provide biological control, from which predictive maps were generated for Europe. Actual biological control was measured in a series of case studies using sentinel systems (insect or seed prey), trade-offs between ecosystem services were explored, and heatmaps of biological control were generated. The overall conclusion from the QuESSA project was that results were context specific, indicating that more targeted approaches to CBC are needed. This may include designing new habitats or modifying existing habitats to support the types of natural enemies required for specific crops or pests

    Sail or sink: novel behavioural adaptations on water in aerially dispersing species

    Get PDF
    Background Long-distance dispersal events have the potential to shape species distributions and ecosystem diversity over large spatial scales, and to influence processes such as population persistence and the pace and scale of invasion. How such dispersal strategies have evolved and are maintained within species is, however, often unclear. We have studied long-distance dispersal in a range of pest-controlling terrestrial spiders that are important predators within agricultural ecosystems. These species persist in heterogeneous environments through their ability to re-colonise vacant habitat by repeated long-distance aerial dispersal (“ballooning”) using spun silk lines. Individuals are strictly terrestrial, are not thought to tolerate landing on water, and have no control over where they land once airborne. Their tendency to spread via aerial dispersal has thus been thought to be limited by the costs of encountering water, which is a frequent hazard in the landscape. Results In our study we find that ballooning in a subset of individuals from two groups of widely-distributed and phylogenetically distinct terrestrial spiders (linyphiids and one tetragnathid) is associated with a hitherto undescribed ability of those same individuals to survive encounters with both fresh and marine water. Individuals that showed a high tendency to adopt ‘ballooning’ behaviour adopted elaborate postures to seemingly take advantage of the wind current whilst on the water surface. Conclusions The ability of individuals capable of long-distance aerial dispersal to survive encounters with water allows them to disperse repeatedly, thereby increasing the pace and spatial scale over which they can spread and subsequently exert an influence on the ecosystems into which they migrate. The potential for genetic connectivity between populations, which can influence the rate of localized adaptation, thus exists over much larger geographic scales than previously thought. Newly available habitat may be particularly influenced given the degree of ecosystem disturbance that is known to follow new predator introductions

    The PREDICTS database: A global database of how local terrestrial biodiversity responds to human impacts

    Full text link
    © 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015. The collation of biodiversity datasets with broad taxonomic and biogeographic extents is necessary to understand historical declines and to project - and hopefully avert - future declines. We describe a newly collated database of more than 1.6 million biodiversity measurements from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world

    Moderate pollination limitation in some entomophilous crops of Europe (article)

    No full text
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe dataset associated with this article is available in ORE at: https://doi.org/10.24378/exe.2463Pollination services to crops may be worsening because of declines in farmland pollinators, but the consequences for yields have been uncertain. We therefore investigated pollination limitation in four entomophilous crops (oilseed rape, sunflower, pears and pumpkin) by quantifying the difference in harvestable mass between open-pollinated and saturation-pollinated (hand-pollinated) flowers. We also examined whether pollination limitation in the four crops was associated with the number of flower visits by insects. Across 105 commercial fields in six European countries, the average decrease in harvestable mass due to pollination limitation was 2.8 % (SE = 1.15). Among crops, the highest decreases were in sunflowers (8%) and in one of three oilseed rape production regions (6%). We observed substantial variation among crops in the numbers of insect visits received by flowers, but it did not significantly correspond with the levels of pollination limitation. Our results suggest that yields in these crops were not severely pollination-limited in the regions studied and that other factors besides visitation by pollinators influenced the degree of pollination limitation.European Union FP

    Moderate pollination limitation in some entomophilous crops of Europe: dataset of field-specific measurements

    No full text
    An Excel spreadsheet in which each worksheet contains the data from 18 focal fields in a particular countryThis spreadsheet displays field-to-field variation in flower density, insect visitation and pollination deficit.The article associated with this dataset is located in ORE at: http://hdl.handle.net/10871/121870This is the dataset used for the Holland et al. (2020) article "Moderate pollination limitation in some entomophilous crops of Europe" published in Agriculture, Ecosystems & Environment. European Commissio
    corecore