1,129 research outputs found

    Geometric control of myogenic cell fate.

    Get PDF
    This work combines expertise in stem cell biology and bioengineering to define the system for geometric control of proliferation and differentiation of myogenic progenitor cells. We have created an artificial niche of myogenic progenitor cells, namely, modified extracellular matrix (ECM) substrates with spatially embedded growth or differentiation factors (GF, DF) that predictably direct muscle cell fate in a geometric pattern. Embedded GF and DF signal progenitor cells from specifically defined areas on the ECM successfully competed against culture media for myogenic cell fate determination at a clearly defined boundary. Differentiation of myoblasts into myotubes is induced in growth-promoting medium, myotube formation is delayed in differentiation-promoting medium, and myogenic cells, at different stages of proliferation and differentiation, can be induced to coexist adjacently in identical culture media. This method can be used to identify molecular interactions between cells in different stages of myogenic differentiation, which are likely to be important determinants of tissue repair. The designed ECM niches can be further developed into a vehicle for transplantation of myogenic progenitor cells maintaining their regenerative potential. Additionally, this work may also serve as a general model to engineer synthetic cellular niches to harness the regenerative potential of organ stem cells

    Electronic structure and bonding properties of Si-doped hydrogenated amorphous carbon films

    Get PDF
    [[abstract]]This work investigates the C K-edge x-ray absorption near-edge structure (XANES), valence-band photoelectron spectroscopy (PES), and Fourier transform infrared (FTIR) spectra of Si-doped hydrogenated amorphous carbon films. The C K-edge XANES and valence-band PES spectra indicate that the sp2/sp3 population ratio decreases as the amount of tetramethylsilane vapor precursor increases during deposition, which suggest that Si doping% enhances sp3 and reduces sp2-bonding configurations. FTIR spectra show the formation of a polymeric sp3 C–Hn structure and Si–Hn bonds, which causes the Young’s modulus and hardness of the films to decrease with the increase of the Si content.[[incitationindex]]SCI[[booktype]]紙

    Tracing magnetism and pairing in FeTe-based systems

    Full text link
    In order to examine the interplay between magnetism and superconductivity, we monitor the non- superconducting chalcogenide FeTe and follow its transitions under insertion of oxygen, doping with Se and vacancies of Fe using spin-polarized band structure methods (LSDA with GGA) starting from the collinear and bicollinear magnetic arrangements. We use a supercell of Fe8Te8 as our starting point so that it can capture local changes in magnetic moments. The calculated values of magnetic moments agree well with available experimental data while oxygen insertions lead to significant changes in the bicollinear or collinear magnetic moments. The total energies of these systems indicate that the collinear-derived structure is the more favorable one prior to a possible superconducting transition. Using a 8-site Betts-cluster-based lattice and the Hubbard model, we show why this structure favors electron or hole pairing and provides clues to a common understanding of charge and spin pairing in the cuprates, pnictides and chalcogenides

    Laser Cooling of Optically Trapped Molecules

    Full text link
    Calcium monofluoride (CaF) molecules are loaded into an optical dipole trap (ODT) and subsequently laser cooled within the trap. Starting with magneto-optical trapping, we sub-Doppler cool CaF and then load 150(30)150(30) CaF molecules into an ODT. Enhanced loading by a factor of five is obtained when sub-Doppler cooling light and trapping light are on simultaneously. For trapped molecules, we directly observe efficient sub-Doppler cooling to a temperature of 60(5)60(5) μK\mu\text{K}. The trapped molecular density of 8(2)×1078(2)\times10^7 cm−3^{-3} is an order of magnitude greater than in the initial sub-Doppler cooled sample. The trap lifetime of 750(40) ms is dominated by background gas collisions.Comment: 5 pages, 5 figure

    Radial Growth of Qilian Juniper on the Northeast Tibetan Plateau and Potential Climate Associations

    Get PDF
    There is controversy regarding the limiting climatic factor for tree radial growth at the alpine treeline on the northeastern Tibetan Plateau. In this study, we collected 594 increment cores from 331 trees, grouped within four altitude belts spanning the range 3550 to 4020 m.a.s.l. on a single hillside. We have developed four equivalent ring-width chronologies and shown that there are no significant differences in their growth-climate responses during 1956 to 2011 or in their longer-term growth patterns during the period AD 1110–2011. The main climate influence on radial growth is shown to be precipitation variability. Missing ring analysis shows that tree radial growth at the uppermost treeline location is more sensitive to climate variation than that at other elevations, and poor tree radial growth is particularly linked to the occurrence of serious drought events. Hence water limitation, rather than temperature stress, plays the pivotal role in controlling the radial growth of Sabina przewalskii Kom. at the treeline in this region. This finding contradicts any generalisation that tree-ring chronologies from high-elevation treeline environments are mostly indicators of temperature changes

    Lack of correlation of stem cell markers in breast cancer stem cells

    Get PDF
    BACKGROUND: Various markers are used to identify the unique sub-population of breast cancer cells with stem cell properties. Whether these markers are expressed in all breast cancers, identify the same population of cells, or equate to therapeutic response is controversial. METHODS: We investigated the expression of multiple cancer stem cell markers in human breast cancer samples and cell lines in vitro and in vivo, comparing across and within samples and relating expression with growth and therapeutic response to doxorubicin, docetaxol and radiotherapy. RESULTS: CD24, CD44, ALDH and SOX2 expression, the ability to form mammospheres and side-population cells are variably present in human cancers and cell lines. Each marker identifies a unique rather than common population of cancer cells. In vivo, cells expressing these markers are not specifically localized to the presumptive stem cell niche at the tumour/stroma interface. Repeated therapy does not consistently enrich cells expressing these markers, although ER-negative cells accumulate. CONCLUSIONS: Commonly employed methods identify different cancer cell sub-populations with no consistent therapeutic implications, rather than a single population of cells. The relationships of breast cancer stem cells to clinical parameters will require identification of specific markers or panels for the individual cancer

    Clinical Implication of Targeting of Cancer Stem Cells

    Get PDF
    The existence of cancer stem cells (CSCs) is receiving increasing interest particularly due to its potential ability to enter clinical routine. Rapid advances in the CSC field have provided evidence for the development of more reliable anticancer therapies in the future. CSCs typically only constitute a small fraction of the total tumor burden; however, they harbor self-renewal capacity and appear to be relatively resistant to conventional therapies. Recent therapeutic approaches aim to eliminate or differentiate CSCs or to disrupt the niches in which they reside. Better understanding of the biological characteristics of CSCs as well as improved preclinical and clinical trials targeting CSCs may revolutionize the treatment of many cancers. Copyright (c) 2012 S. Karger AG, Base

    Blow-up profile of rotating 2D focusing Bose gases

    Full text link
    We consider the Gross-Pitaevskii equation describing an attractive Bose gas trapped to a quasi 2D layer by means of a purely harmonic potential, and which rotates at a fixed speed of rotation Ω\Omega. First we study the behavior of the ground state when the coupling constant approaches a_∗a\_* , the critical strength of the cubic nonlinearity for the focusing nonlinear Schr{\"o}dinger equation. We prove that blow-up always happens at the center of the trap, with the blow-up profile given by the Gagliardo-Nirenberg solution. In particular, the blow-up scenario is independent of Ω\Omega, to leading order. This generalizes results obtained by Guo and Seiringer (Lett. Math. Phys., 2014, vol. 104, p. 141--156) in the non-rotating case. In a second part we consider the many-particle Hamiltonian for NN bosons, interacting with a potential rescaled in the mean-field manner −−a_NN2β−−1w(Nβx),with--a\_N N^{2\beta--1} w(N^{\beta} x), with wapositivefunctionsuchthat a positive function such that \int\_{\mathbb{R}^2} w(x) dx = 1.Assumingthat. Assuming that \beta < 1/2andthat and that a\_N \to a\_*sufficientlyslowly,weprovethatthemany−bodysystemisfullycondensedontheGross−Pitaevskiigroundstateinthelimit sufficiently slowly, we prove that the many-body system is fully condensed on the Gross-Pitaevskii ground state in the limit N \to \infty$

    Magnetism and its microscopic origin in iron-based high-temperature superconductors

    Full text link
    High-temperature superconductivity in the iron-based materials emerges from, or sometimes coexists with, their metallic or insulating parent compound states. This is surprising since these undoped states display dramatically different antiferromagnetic (AF) spin arrangements and NeËŠ\rm \acute{e}el temperatures. Although there is general consensus that magnetic interactions are important for superconductivity, much is still unknown concerning the microscopic origin of the magnetic states. In this review, progress in this area is summarized, focusing on recent experimental and theoretical results and discussing their microscopic implications. It is concluded that the parent compounds are in a state that is more complex than implied by a simple Fermi surface nesting scenario, and a dual description including both itinerant and localized degrees of freedom is needed to properly describe these fascinating materials.Comment: 14 pages, 4 figures, Review article, accepted for publication in Nature Physic

    Narrowband Biphotons: Generation, Manipulation, and Applications

    Full text link
    In this chapter, we review recent advances in generating narrowband biphotons with long coherence time using spontaneous parametric interaction in monolithic cavity with cluster effect as well as in cold atoms with electromagnetically induced transparency. Engineering and manipulating the temporal waveforms of these long biphotons provide efficient means for controlling light-matter quantum interaction at the single-photon level. We also review recent experiments using temporally long biphotons and single photons.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel
    • …
    corecore