45 research outputs found

    Identification of QTLs for Arsenic Accumulation in Maize (Zea mays L.) Using a RIL Population

    Get PDF
    The Arsenic (As) concentration in different tissues of maize was analyzed using a set of RIL populations derived from an elite hybrid, Nongda108. The results showed that the trend of As concentration in the four measured tissues was leaves>stems>bracts>kernels. Eleven QTLs for As concentration were detected in the four tissues. Three QTLs for As concentration in leaves were mapped on chromosomes 1, 5, and 8, respectively. For As concentration in the bracts, two QTLs were identified, with 9.61% and 10.03% phenotypic variance. For As concentration in the stems, three QTLs were detected with 8.24%, 14.86%, and 15.23% phenotypic variance. Three QTLs were identified for kernels on chromosomes 3, 5, and 7, respectively, with 10.73%, 8.52%, and 9.10% phenotypic variance. Only one common chromosomal region between SSR marker bnlg1811 and umc1243 was detected for QTLs qLAV1 and qSAC1. The results implied that the As accumulation in different tissues in maize was controlled by different molecular mechanism. The study demonstrated that maize could be a useful plant for phytoremediation of As-contaminated paddy soil, and the QTLs will be useful for selecting inbred lines and hybrids with low As concentration in their kernels

    Elemental composition of vegetables cultivated over coal-mining waste

    Get PDF
    ABSTRACT We assessed elemental composition of the liver in mice subjected to one-time or chronic consumption of the juice of vegetables cultivated in a vegetable garden built over deposits of coal waste. Lactuca sativa L. (lettuce), Beta vulgaris L. (beet), Brassica oleracea L. var. italica (broccoli) and Brassica oleracea L. var. acephala (kale) were collected from the coal-mining area and from a certified organic farm (control). Elemental composition was analyzed by particle-induced X-ray emission (PIXE) method. Concentrations of Mg, S, and Ca of mice subjected to one-time consumption of broccoli and concentrations of these same elements plus Si of mice receiving kale were higher in the coal-mining area. Concentrations of P, K, and Cu were increase after chronic consumption of lettuce from the coal-mining area, whereas the levels of Si, P, K, Fe, and Zn were higher in the group consuming kale from the coal-mining area. Our data suggests that people consuming vegetables grown over coal wastes may ingest significant amounts of chemical elements that pose a risk to health, since these plants contain both essential and toxic metals in a wide range of concentrations, which can do more harm than good

    Risk of human exposure to arsenic and other toxic elements from geophagy : trace element analysis of baked clay using inductively coupled plasma spectrometry

    Get PDF
    Geophagy or earth-eating is common amongst some Bangladeshi women, especially those who are pregnant, both in Bangladesh and in the United Kingdom. A large proportion of the population in Bangladesh is already exposed to high concentrations of arsenic (As) and other toxic elements from drinking contaminated groundwater. Additional exposure to As and other toxic elements from non-food sources has not been adequately addressed and here we present the first study to monitor As levels in baked clay (known as sikor). Methods: Sikor samples originating from Bangladesh were digested using a microwave digester and analysed for their As, Pb, Cd, Mn, Fe and Zn levels using ICP-MS. Detailed As speciation analysis was performed using HPLC-ICPMS. Results: Of particular concern were the levels of As (3.8-13.1 mg kg-1), Cd (0.09-0.4 mg kg-1) and Pb (21-26.7 mg kg-1) present in the sikor samples and their possible impact on human health. Speciation analysis revealed that sikor samples contained mainly inorganic As. Modest consumption of 50 g of sikor is equivalent to ingesting 370 μg of As and 1235 μg of Pb per day, based on median concentration values. This level of sikor consumption exceeds the permitted maximum tolerable daily intake (PMTDI) of inorganic As by almost 2-fold. Conclusion: We conclude that sikor can be a significant source of As, Cd and Pb exposure for the Bangladeshi population consuming large quantities of this material. Of particular concern in this regard is geophagy practiced by pregnant women concurrently exposed to As contaminated drinking water. Future studies needs to evaluate the bioavailability of As and other elements from sikor and their impact on human health

    An IoT-Big Data Based Machine Learning Technique for Forecasting Water Requirement in Irrigation Field

    No full text
    Part 2: IoT and Emerging ParadigmInternational audienceEfficient water management is a major concern in rice cropping. Controlling the use of excessive water in irrigation field is essential for the protection of underground water that will also be the part of climate change adaptation. The sustainable use of water resources is the prior task in Bangladesh. Imbalances between demand and supply are the main region for degradation of surface and groundwater. The human readability of checking the water level on irrigation field is considerable for these circumstances. In this paper I discussed the procedure for monitoring of surface water level in irrigation field, continuous monitoring of weather condition like temperature, air pressure, sunlight, rainfall etc. by using sensor network. The aim is to create a machine learning mechanism for farmers that can be given a forecast of water demand of irrigation field by the collection of IoT based data. In turn, this will help the farmer to prepare them to give water and on the other hand it will be helpful to use appropriate ground water and also it can be used for predict energy utilization. In this research Multiple linear regression algorithm is used for this prediction. Data from the irrigation field of North-West part in Bangladesh is used here to find the result of prediction

    Chronic kidney diseases of uncertain etiology (CKDue) in Sri Lanka: geographic distribution and environmental implications

    No full text
    The increase in the number of chronic kidney disease (CKD) patients from the north central region of Sri Lanka has become a environmental health issue of national concern. Unlike in other countries where long-standing diabetes and hypertension are the leading causes of renal diseases, the majority of CKD patients from this part of Sri Lanka do not show any identifiable cause. As the disease is restricted to a remarkably specific geographical terrain, particularly in the north central dry zone of the country, multidisciplinary in-depth research studies are required to identify possible etiologies and risk factors. During this study, population screening in the prevalent region and outside the region, analysis of geoenvironmental and biochemical samples were carried out. Population screening that was carried out using a multistage sampling technique indicated that the point prevalence of CKD with uncertain etiology is about 2-3% among those above 18 years of age. Drinking water collected from high-prevalent and non-endemic regions was analyzed for their trace and ultratrace element contents, including the nephrotoxic heavy metals Cd and U using ICPMS. The results indicate that the affected regions contain moderate to high levels of fluoride. The Cd contents in drinking water, rice from affected regions and urine from symptomatic and non-symptomatic patients were much lower indicating that Cd is not a contributing factor for CKD with uncertain etiology in Sri Lanka. Although no single geochemical parameter could be clearly and directly related to the CKD etiology on the basis of the elements determined during this study, it is very likely hat the unique hydrogeochemistry of the drinking water is closely associated with the incidence of the disease
    corecore