2,198 research outputs found

    Subtropical-temperate forested wetlands of coastal south-eastern Australia – an analysis of vegetation data to support ecosystem risk assessment at regional, national and global scales

    Get PDF
    Forested wetlands occurring on fluvial sediments are among the most threatened ecosystems in south-east Australia. The first quantitative diagnosis of forested wetland types in NSW was completed in 2005. Since then, there has been a three-fold increase in survey data on coastal floodplains, vegetation classification systems have been developed in New South Wales, Queensland and Victoria, and methods for the assessment of ecosystem conservation risks have been adopted by the International Union for the Conservation of Nature (IUCN). Aims. To ensure an evidence base that can support conservation decisions and national conservation assessments, there is a need to review and update the classification of forested wetlands and integrate classification schemes across jurisdictions. Methods. We evaluated the efficacy of a multi-stage clustering strategy, applied to data from different sources with largely unknown methodological idiosyncrasies, to retrieve ecologically meaningful clusters. We assessed the veracity and robustness of the 2005 classification of forest wetlands as a framework for national risk assessments over an expanded range. Key results. We derived a quantitative, cross- jurisdictional classification of forested wetlands based on a synthesis of 5173 plot samples drawn from three states and identified the status of our units in relation to IUCN's Global Ecosystem Typology. Conclusions. Our analyses support the retention of the five legacy types which are the basis for threatened ecosystem listings under the NSW Biodiversity Conservation Act 2016 and Commonwealth Environment Protection and Biodiversity Conservation Act 1999. Implications. Our results will support revised assessments of current listings and facilitate their integration at state, national and global scale

    Attraction of settlement-stage coral reef fishes to reef noise

    Get PDF
    Journal ArticlePublished versionWe compared catches of settlement-stage reef fishes in light traps attached to underwater speakers playing reef sounds with those of silent traps during a summer recruitment season at Lizard Island, Great Barrier Reef, Australia. Of the total 40191 reef fishes we collected, significantly more (67 %; Wilcoxon and Binomial tests: p < 0.001) appeared in the traps with broadcast reef noise. Traps deployed with speakers consistently caught a greater diversity of species (Wilcoxon test: p < 0.001, total 81 vs 68) than did silent traps. This study provides a clear demonstration that the settlement-stages of a broad range of families of coral reef fishes are attracted to reef sounds

    Response of embryonic coral reef fishes (Pomacentridae: Amphiprion spp.) to noise

    Get PDF
    We investigated the ability of embryonic clownfishes Amphiprion ephippium and A. rubrocinctus to detect sound during incubation in benthic nests. The heart rates of embryos within eggs were monitored as the young fish were exposed to sounds in the range of 100 to 1200 Hz at levels of 80 to 150 dB (re 1 μPa at 1 m) on each day of incubation. We found that, from 3 d after fertilisation, the heart rates of the embryos significantly increased when exposed to sound. As the embryos developed, a response in heart rate was found over a broader spectrum of sound (from 400 to 700 Hz at 3 d to a maximum of 100 to 1200 kHz at 9 d after fertilisation) and sensitivity also increased, with response threshold minima at 700 Hz dropping from 139.1 dB at 3 d to 88.3 dB at 9 d after fertilisation. We discuss these findings with respect to recent work that demonstrates the importance of sound as a settlement cue in coral reef fishes. © Inter-Research 2005.Natural Environment Research Council postgraduate fellowshipBritish AssociationInstitute of Museum and Library Service of the US Department of EducationNational Institute of Mental HealthNational Organization for Hearing ResearchKentucky Water Resources Research InstituteUniversity of Kentucky Research Committee grantAustralian Institute of Marine Science gran

    School is out on noisy reefs: the effect of boat noise on predator learning and survival of juvenile coral reef fishes

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Noise produced by anthropogenic activities is increasing in many marine ecosystems. We investigated the effect of playback of boat noise on fish cognition. We focused on noise from small motorboats, since its occurrence can dominate soundscapes in coastal communities, the number of noise-producing vessels is increasing rapidly and their proximity to marine life has the potential to cause deleterious effects. Cognition-or the ability of individuals to learn and remember information-is crucial, given that most species rely on learning to achieve fitness-promoting tasks, such as finding food, choosing mates and recognizing predators. The caveat with cognition is its latent effect: the individual that fails to learn an important piece of information will live normally until the moment where it needs the information to make a fitness-related decision. Such latent effects can easily be overlooked by traditional risk assessment methods. Here, we conducted three experiments to assess the effect of boat noise playbacks on the ability of fish to learn to recognize predation threats, using a common, conserved learning paradigm. We found that fish that were trained to recognize a novel predator while being exposed to 'reef + boat noise' playbacks failed to subsequently respond to the predator, while their 'reef noise' counterparts responded appropriately. We repeated the training, giving the fish three opportunities to learn three common reef predators, and released the fish in the wild. Those trained in the presence of 'reef + boat noise' playbacks survived 40% less than the 'reef noise' controls over our 72 h monitoring period, a performance equal to that of predator-naive fish. Our last experiment indicated that these results were likely due to failed learning, as opposed to stress effects from the sound exposure. Neither playbacks nor real boat noise affected survival in the absence of predator training. Our results indicate that boat noise has the potential to cause latent effects on learning long after the stressor has gone.Funding for this study was provided by the Natural Sciences and Engineering Research Council of Canada (M.C.O.F., D.P.C.), the Australian Research Council (M.I.M., M.C.O.F., D.P.C., M.G.M.), the ARC Center of Excellence for Coral Reef Studies (M.I.M.) and the UK Natural Environment Research Council (S.D.S.)

    Anthropogenic noise increases fish mortality by predation

    Get PDF
    PublishedNoise-generating human activities affect hearing, communication and movement in terrestrial and aquatic animals, but direct evidence for impacts on survival is rare. We examined effects of motorboat noise on post-settlement survival and physiology of a prey fish species and its performance when exposed to predators. Both playback of motorboat noise and direct disturbance by motorboats elevated metabolic rate in Ambon damselfish (Pomacentrus amboinensis), which when stressed by motorboat noise responded less often and less rapidly to simulated predatory strikes. Prey were captured more readily by their natural predator (dusky dottyback, Pseudochromis fuscus) during exposure to motorboat noise compared with ambient conditions, and more than twice as many prey were consumed by the predator in field experiments when motorboats were passing. Our study suggests that a common source of noise in the marine environment has the potential to impact fish demography, highlighting the need to include anthropogenic noise in management plans.This work was supported by a NERC Knowledge Exchange Fellowship (for S.D.S.), the UK Department for Environment Food and Rural Affairs (S.D.S. and A.N.R.), the ARC Centre of Excellence for Coral Reef Studies (M.I.M; EI140100117) and an EPSRC studentship (S.L.N.). NERC KE Fellowship (S.D.S.; NE/J500616/2

    Motorboat noise impacts parental behaviour and offspring survival in a reef fish

    Get PDF
    This is the author accepted manuscript. The final version is available from the Royal Society via the DOI in this record.Anthropogenic noise is a pollutant of international concern, with mounting evidence of disturbance and impacts on animal behaviour and physiology. However, empirical studies measuring survival consequences are rare. We use a field experiment to investigate how repeated motorboat-noise playback affects parental behaviour and offspring survival in the spiny chromis (Acanthochromis polyacanthus), a brooding coral reef fish. Repeated observations were made for 12 days at 38 natural nests with broods of young. Exposure to motorboat-noise playback compared to ambient-sound playback increased defensive acts, and reduced both feeding and offspring interactions by brood-guarding males. Anthropogenic noise did not affect the growth of developing offspring, but reduced the likelihood of offspring survival; while offspring survived at all 19 nests exposed to ambient-sound playback, six of the 19 nests exposed to motorboat-noise playback suffered complete brood mortality. Our study, providing field-based experimental evidence of the consequences of anthropogenic noise, suggests potential fitness consequences of this global pollutant.This work was supported by a NERC Knowledge Exchange Fellowship (for S.D.S.; NE/J500616/2), the UK Department for Environment Food and Rural Affairs (S.D.S. and A.N.R.; ME5207), funds from ARC Centre of Excellence for Coral Reef Studies (M.I.M; EI140100117), an EPSRC studentship and Subacoustech (S.L.N.)

    Corticosteroid treatment is associated with increased filamentous fungal burden in allergic fungal disease

    Get PDF
    Background Allergic diseases caused by fungi are common. The best understood conditions are allergic bronchopulmonaryaspergillosis (ABPA) and severe asthma with fungal sensitisation (SAFS). Our knowledge of the fungal microbiome (mycobiome) is limited to a few studies involving healthy individuals, asthmatics and smokers. No study has yet examined the mycobiome in fungal lung disease. Objectives The main aim of this study was to determine the mycobiome in lungs of individuals with well characterised fungal disease. A secondary objective was to determine possible effects of treatment on the mycobiome. Methods After bronchoscopy, ITS1 DNA was amplified and sequenced and fungal load determined by RT-PCR. Clinical and treatment variables were correlated with the main species identified. ABPA (n=16), SAFS (n=16), severe asthma not sensitised to fungi, (n=9), mild asthma patients(n=7) and 10 healthy controls were studied. Results The mycobiome was highly varied with severe asthmatics carrying higher loads of fungus. Healthy individuals had low fungal loads, mostly poorly characterised Malasezziales.The most common fungus in asthmatics was Aspergillus fumigatus complex and this taxon accounted for the increased burden of fungus in the high level samples. Corticosteroid treatment was significantly associated with increased fungal load (p&lt;0.01). Conclusions The mycobiome is highly variable. Highest loads of fungus are observed in severe asthmatics and the most common fungus is Aspergillus fumigatus complex. Individuals receiving steroid therapy had significantly higher levels of Aspergillus and total fungus in their BAL

    Dysfunction of NaV1.4, a skeletal muscle voltage-gated sodium channel, in sudden infant death syndrome: a case-control study.

    Get PDF
    BACKGROUND: Sudden infant death syndrome (SIDS) is the leading cause of post-neonatal infant death in high-income countries. Central respiratory system dysfunction seems to contribute to these deaths. Excitation that drives contraction of skeletal respiratory muscles is controlled by the sodium channel NaV1.4, which is encoded by the gene SCN4A. Variants in NaV1.4 that directly alter skeletal muscle excitability can cause myotonia, periodic paralysis, congenital myopathy, and myasthenic syndrome. SCN4A variants have also been found in infants with life-threatening apnoea and laryngospasm. We therefore hypothesised that rare, functionally disruptive SCN4A variants might be over-represented in infants who died from SIDS. METHODS: We did a case-control study, including two consecutive cohorts that included 278 SIDS cases of European ancestry and 729 ethnically matched controls without a history of cardiovascular, respiratory, or neurological disease. We compared the frequency of rare variants in SCN4A between groups (minor allele frequency <0·00005 in the Exome Aggregation Consortium). We assessed biophysical characterisation of the variant channels using a heterologous expression system. FINDINGS: Four (1·4%) of the 278 infants in the SIDS cohort had a rare functionally disruptive SCN4A variant compared with none (0%) of 729 ethnically matched controls (p=0·0057). INTERPRETATION: Rare SCN4A variants that directly alter NaV1.4 function occur in infants who had died from SIDS. These variants are predicted to significantly alter muscle membrane excitability and compromise respiratory and laryngeal function. These findings indicate that dysfunction of muscle sodium channels is a potentially modifiable risk factor in a subset of infant sudden deaths. FUNDING: UK Medical Research Council, the Wellcome Trust, National Institute for Health Research, the British Heart Foundation, Biotronik, Cardiac Risk in the Young, Higher Education Funding Council for England, Dravet Syndrome UK, the Epilepsy Society, the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health, and the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program
    • …
    corecore