10 research outputs found

    Temporal patterns of Deepwater Horizon impacts on the benthic infauna of the northern Gulf of Mexico continental slope

    No full text
    The Deepwater Horizon oil spill occurred in spring and summer 2010 in the northern Gulf of Mexico. Research cruises in 2010 (approximately 2-3 months after the well had been capped), 2011, and 2014 were conducted to determine the initial and subsequent effects of the oil spill on deep-sea soft-bottom infauna. A total of 34 stations were sampled from two zones: 20 stations in the "impact" zone versus 14 stations in the "non-impact" zone. Chemical contaminants were significantly different between the two zones. Polycyclic aromatic hydrocarbons averaged 218 ppb in the impact zone compared to 14 ppb in the non-impact zone. Total petroleum hydrocarbons averaged 1166 ppm in the impact zone compared to 102 ppm in the non-impact zone. While there was no difference between zones for meiofauna and macrofauna abundance, community diversity was significantly lower in the impact zone. Meiofauna taxa richness over the three sampling periods averaged 8 taxa/sample in the impact zone, compared to 10 taxa/sample in the non-impact zone; and macrofauna richness averaged 25 taxa/sample in the impact zone compared to 30 taxa/sample in the non-impact zone. Oil originating from the Deepwater Horizon oil spill reached the seafloor and had a persistent negative impact on diversity of soft-bottom, deep-sea benthic communities. While there are signs of recovery for some benthic community variables, full recovery has not yet occurred four years after the spill

    Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA) Events: Learning from the Past to Predict the Future

    No full text
    Despite interest as early as in the 1880s, it was not until 1953 that Tokimi Tsujita (Seikai Fisheries Research Laboratory, Japan) was able to carefully collect and describe the matrix of microorganisms embedded in suspended organic matter (Tsujita, J Oceanogr Soc Jpn 8:1–14, 1953) that today we call marine snow. Subsequent studies reported that marine snow consisted of phytoplankton, small zooplankton, fecal material, and other particles (Nishizawa et al., Bull Fac Fish, Hokkaido Univ. 5:36–40, 1954). Across the ocean, Riley (Limnol Oceanogr 8:372–381, 1963) called this material “organic aggregates” which in addition to the organic material included nonliving material that was a “substrate for bacterial growth.” More than a decade later, Silver et al. (Science 201:371–373, 1978) quantified the abundance of marine snow, and its contribution to the total community in situ, and showed that marine snow particles were “metabolic hotspots,” with concentrations of microorganisms 3–4 orders of magnitude greater than those in the surrounding seawater. Alldredge and Cohen (Science 235:689–691, 1987) emphasized the importance of marine snow as unique chemical and physical microhabitats. The importance of transparent exopolymer particles (TEP), which form the matrix that embeds the individual component particles of marine snow, were described and quantified in the early 1990s (Alldredge et al., Deep-Sea Res I 40: 1131–1140, 1993; Passow and Alldredge, Mar Ecol Prog Ser 113:185–198, 1994; Passow et al., Deep-Sea Res Oceanogr Abstr 41:335–357, 1994). The long-held belief that marine snow was both a specialized habitat and potential food source for those living in the deep ocean was also demonstrated at that time (Silver and Gowing, Prog Oceanogr 26:75–113, 1991). More recently it was confirmed that marine snow does indeed contribute significantly to the metabolism of the deep sea and provides hotspots of microbial diversity and activity at depth (e.g., Burd et al., Deep-Sea Res II 57:1557–1571, 2010; Bochdansky et al., Sci Rep 6:22633, 2016). Moreover, marine snow is now considered a transport vehicle for its biota and associated particulate matter (Volk and Hoffert, The carbon cycle and atmospheric CO: natural variations archean to present. American Geophysical Union, Washington, D.C., pp. 99–110, 1985; Alldredge and Gotschalk, Limnol Oceanogr 33:339–351, 1988). Rapidly sinking marine snow is important in the marine carbon cycle as it is responsible for vertical (re)distribution and remineralization of carbon. The transport of carbon from the surface to the deep sea is known as the “biological carbon pump” (De La Rocha and Passow, Deep Sea Res II 54:639–658, 2007; De La Rocha and Passow, Treatise on Geochemistry. Vol. 8, Elsevier, Oxford, 2014). This pump, which leads to the uptake and sequestration of atmospheric CO2 (e.g., Volk and Hoffert, The carbon cycle and atmospheric CO: natural variations archean to present. American Geophysical Union, Washington, D.C., pp. 99–110, 1985; Finkel et al., J Plankton Res 32:119–137, 2010; Zetsche and Ploug, Mar Chem 175:1–4, 2015), also plays an important role in the biogeochemical cycling of elements (e.g., Quigg et al., Nature 425:291–294, 2003; Quigg et al., Proc R Soc: Biol Sci 278:526–534, 2011). How climate change will change these processes is the subject of intense interest but beyond the scope of this chapter
    corecore