68 research outputs found

    Experience replay is associated with efficient nonlocal learning

    Get PDF
    To make effective decisions, people need to consider the relationship between actions and outcomes. These are often separated by time and space. The neural mechanisms by which disjoint actions and outcomes are linked remain unknown. One promising hypothesis involves neural replay of nonlocal experience. Using a task that segregates direct from indirect value learning, combined with magnetoencephalography, we examined the role of neural replay in human nonlocal learning. After receipt of a reward, we found significant backward replay of nonlocal experience, with a 160-millisecond state-to-state time lag, which was linked to efficient learning of action values. Backward replay and behavioral evidence of nonlocal learning were more pronounced for experiences of greater benefit for future behavior. These findings support nonlocal replay as a neural mechanism for solving complex credit assignment problems during learning

    HER2-Mediated Internalization of Cytotoxic Agents in ERBB2 Amplified or Mutant Lung Cancers

    Get PDF
    Amplification and oncogenic mutations of ERBB2, the gene encoding the HER2 receptor tyrosine kinase, promote receptor hyperactivation and tumor growth. Here we demonstrate that HER2 ubiquitination and internalization, rather than its overexpression, are key mechanisms underlying endocytosis and consequent efficacy of the anti-HER2 antibody-drug conjugates (ADCs) ado-trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd) in lung cancer cell lines and patient-derived xenograft models. These data translated into a 51% response rate in a clinical trial of T-DM1 in 49 patients with ERBB2/HER2-amplified or mutant lung cancers. We show that co-treatment with irreversible pan-HER inhibitors enhances receptor ubiquitination and consequent ADC internalization and efficacy. We also demonstrate that ADC switching to T-DXd, which harbors a different cytotoxic payload, achieves durable responses in a patient with lung cancer and corresponding xenograft model developing resistance to T-DM1. Our findings may help guide future clinical trials and expand the field of ADC as cancer therapy

    Assessment of optimal strategies in a two-patch dengue transmission model with seasonality

    Get PDF
    Emerging and re-emerging dengue fever has posed serious problems to public health officials in many tropical and subtropical countries. Continuous traveling in seasonally varying areas makes it more difficult to control the spread of dengue fever. In this work, we consider a two-patch dengue model that can capture the movement of host individuals between and within patches using a residence-time matrix. A previous two-patch dengue model without seasonality is extended by adding host demographics and seasonal forcing in the transmission rates. We investigate the effects of human movement and seasonality on the two-patch dengue transmission dynamics. Motivated by the recent Peruvian dengue data in jungle/rural areas and coast/urban areas, our model mimics the seasonal patterns of dengue outbreaks in two patches. The roles of seasonality and residence-time configurations are highlighted in terms of the seasonal reproduction number and cumulative incidence. Moreover, optimal control theory is employed to identify and evaluate patch-specific control measures aimed at reducing dengue prevalence in the presence of seasonality. Our findings demonstrate that optimal patch-specific control strategies are sensitive to seasonality and residence-time scenarios. Targeting only the jungle (or endemic) is as effective as controlling both patches under weak coupling or symmetric mobility. However, focusing on intervention for the city (or high density areas) turns out to be optimal when two patches are strongly coupled with asymmetric mobility.ope

    The Role of Intestinal Microbiota in the Development and Severity of Chemotherapy-Induced Mucositis

    Get PDF
    Mucositis, also referred to as mucosal barrier injury, is one of the most debilitating side effects of radiotherapy and chemotherapy treatment. Clinically, mucositis is associated with pain, bacteremia, and malnutrition. Furthermore, mucositis is a frequent reason to postpone chemotherapy treatment, ultimately leading towards a higher mortality in cancer patients. According to the model introduced by Sonis, both inflammation and apoptosis of the mucosal barrier result in its discontinuity, thereby promoting bacterial translocation. According to this five-phase model, the intestinal microbiota plays no role in the pathophysiology of mucositis. However, research has implicated a prominent role for the commensal intestinal microbiota in the development of several inflammatory diseases like inflammatory bowel disease, pouchitis, and radiotherapy-induced diarrhea. Furthermore, chemotherapeutics have a detrimental effect on the intestinal microbial composition (strongly decreasing the numbers of anaerobic bacteria), coinciding in time with the development of chemotherapy-induced mucositis. We hypothesize that the commensal intestinal microbiota might play a pivotal role in chemotherapy-induced mucositis. In this review, we propose and discuss five pathways in the development of mucositis that are potentially influenced by the commensal intestinal microbiota: 1) the inflammatory process and oxidative stress, 2) intestinal permeability, 3) the composition of the mucus layer, 4) the resistance to harmful stimuli and epithelial repair mechanisms, and 5) the activation and release of immune effector molecules. Via these pathways, the commensal intestinal microbiota might influence all phases in the Sonis model of the pathogenesis of mucositis. Further research is needed to show the clinical relevance of restoring dysbiosis, thereby possibly decreasing the degree of intestinal mucositis

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p

    Motor imagery and action observation: cognitive tools for rehabilitation

    Get PDF
    Rehabilitation, for a large part may be seen as a learning process where old skills have to be re-acquired and new ones have to be learned on the basis of practice. Active exercising creates a flow of sensory (afferent) information. It is known that motor recovery and motor learning have many aspects in common. Both are largely based on response-produced sensory information. In the present article it is asked whether active physical exercise is always necessary for creating this sensory flow. Numerous studies have indicated that motor imagery may result in the same plastic changes in the motor system as actual physical practice. Motor imagery is the mental execution of a movement without any overt movement or without any peripheral (muscle) activation. It has been shown that motor imagery leads to the activation of the same brain areas as actual movement. The present article discusses the role that motor imagery may play in neurological rehabilitation. Furthermore, it will be discussed to what extent the observation of a movement performed by another subject may play a similar role in learning. It is concluded that, although the clinical evidence is still meager, the use of motor imagery in neurological rehabilitation may be defended on theoretical grounds and on the basis of the results of experimental studies with healthy subjects

    Fast reverse replays of recent spatiotemporal trajectories in a robotic hippocampal model

    Get PDF
    A number of computational models have recently emerged in an attempt to understand the dynamics of hippocampal replay, but there has been little progress in testing and implementing these models in real-world robotics settings. Presented here is a bioinspired hippocampal CA3 network model, that runs in real-time to produce reverse replays of recent spatiotemporal sequences in a robotic spatial navigation task. For the sake of computational efficiency, the model is composed of continuous-rate based neurons, but incorporates two biophysical properties that have recently been hypothesised to play an important role in the generation of reverse replays: intrinsic plasticity and short-term plasticity. As this model only replays recently active trajectories, it does not directly address the functional properties of reverse replay, for instance in robotic learning tasks, but it does support further investigations into how reverse replays could contribute to functional improvements
    • 

    corecore