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Abstract. A number of computational models have recently emerged in
an attempt to understand the dynamics of hippocampal replay, but there
has been little progress in testing and implementing these models in real-
world robotics settings. Presented here is a hippocampal CA3 network
model, that runs in real-time to produce reverse replays of recent spa-
tiotemporal sequences in a robotic spatial navigation task. For the sake of
computational efficiency, the model is composed of continuous-rate based
neurons, but incorporates two biophysical properties that have recently
been hypothesised to play an important role in the generation of reverse
replays: intrinsic plasticity and short-term plasticity. As this model only
replays recently active trajectories, it does not directly address the func-
tional properties of reverse replay, for instance in robotic learning tasks.
But it does support further investigations into how reverse replays could
contribute to functional improvements, since a biophysical robotic model
of reverse replay emergence is a necessary condition towards this goal.

Keywords: Robotics · Hippocampal replay · Computational modelling.

1 Introduction

How the nervous system represents, stores and retrieves memories is an ongoing
research problem, but an interesting hypothesis now gaining strong experimental
support is that hippocampal replay plays an important role [9, 14, 7, 24]. Place
cell activities in the CA region of the hippocampus, which are cells that respond
preferentially when a rodent is positioned in the place cell’s spatial receptive field
[23, 22], are often invoked during hippocampal replay events and are therefore a
useful concept for understanding hippocampal replay. In its simplest form, hip-
pocampal replay is the temporally preserved reactivation of recently active place
cells during sleep [37, 31, 18] and during periods of awake immobility or quies-
cence [4, 28], and have been shown to occur during brief periods of hippocampal
sharp-wave ripple events [6]. Replays can reinstate the temporal ordering of the
place cells in either the forward direction [31, 18] or the reverse direction [8],
termed forward replay and reverse replay, respectively.

There are a number of important differences in both the behavioural and
neural states between reverse replays and forward replays. For instance, whilst
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forward replays show to occur during both awake and sleep states, and can
reinstate either remotely (i.e. reinstating experiences from locations that are
spatially distant from the original experience) or locally [4], reverse replays tend
to occur almost exclusively during awake replay events, reflecting the immediate
local past experience [8]. And unlike awake forward replays, reverse replays are
strongly modulated by rewards, such that the frequency of reverse replays initi-
ating at reward sites increases in the presence of increased rewards and reduces
in response to decreased rewards [1]. In addition, reverse replays are capable of
emergence following only a single trial, and it has therefore been proposed that
reverse replays may be a consequence of place cell excitability changes not re-
lying on traditional synaptic plasticity, such as lingering place cell activities [6],
or more recently long-term potentiation of intrinsic excitability [25]. Reverse re-
plays may then induce synaptic changes that provide the mechanism for replays
during states where the transient activity has faded, such as during sleep states
[2]. These point towards an intricate interplay between transient excitability
changes and synaptic plasticities in the emergence of the various forms of replay
under different behavioural states.

Presented here is a biophysical, continuous rate-based network model of re-
verse replay implemented on a simulated version of the biomimetic robot MiRo
[20], and is based on two recent models of hippocampal replay dynamics in recur-
rent CA3 networks [11, 25]. Reverse replays in this model occur as a consequence
of two modes of transient neural states. The first is due to the implementation
of a time decaying model of intrinsic plasticity. Intrinsic plasticity is the abil-
ity of a cell to increase heterosynaptic long-term potentiation of post-synaptic
potentials following recent activity [38, 13], and has recently been proposed as
a potential mechanism for the occurrence of reverse replays [25]. The second
transient neural state implementation is in short-term plasticity, which acts to
ensure unidirectional, stable replays [11]. This is due to short-term depression
suppressing synaptic currents after a given amount of continuous firing, thus
preventing unbounded synaptic transmissions.

2 Methods

2.1 Network Architecture

The network consists of 100 rate-based neurons representing place cells, arranged
in a grid of size 10 × 10, each of which has its place fields spread evenly across
an open circular environment. Each cell forms a bidirectional and symmetric
synaptic connection to its 8 nearest neighbours, with all weights fixed at a value
of 1. Figure 1 gives an example of the network architecture for a subset of cells.
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Fig. 1. The simulated environment used to test the model with the MiRo robot. The
network architecture consists of a 10x10 array of place cells with place fields uniformly
covering the environment. Bidirectional symmetric connections exist between each cell’s
eight nearest neighbours in space, as shown for a small patch of the environment here.
An example trajectory is shown here, in which MiRo begins at the start position in A,
passes through location B and ends in the goal location at C.
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2.2 Network Dynamics

The activity of a single neuron, i, is described by a first-order decaying differen-
tial, with its activity increasing according to incoming recurrent synaptic inputs
and place specific inputs, and reducing in response to a global inhibitory term

τI
d

dt
Ii = −Ii + σiI

syn
i + I

place
i − Iinh (1)

with τI = 0.05s. The activity is passed through a linear rectifier with a lower
bound of 0Hz and an upper bound of 100Hz to give the final rate, ri

r
′

i = α (Ii − ǫ)

ri =











0 if r
′

i < 0

100 if r
′

i > 100

r
′

i otherwise

(2)

with α = 1 and ǫ = 2.
I
place
i is the place specific input, for which each neuron has associated with it

a place field in the environment (in this instance a 2m×2m environment, Figure
1). The place fields are spread uniformly across the environment, each having a
centre point, (xi, yi). The place-specific input for neuron i is then given as an
exponential of the distance the robot is from the place field’s centre point,

I
place
i = Ipmaxexp

[

−

(x− xi)
2 + (y − yi)

2

2d2

]

(3)

with Ipmax = 50Hz and d = 0.1m.
I
syn
i represents the synaptic input and is given as the sum of the incoming

synaptic connections from the cell’s 8 nearest neighbours

I
syn
i = λ

8
∑

j=1

wijrjDjFj (4)

where wij represents the weight from neuron j onto neuron i. λ takes on a
value of 0 or 1, depending on whether the robot is exploring or resting at the
reward (see Section 2.3), respectively. Dj and Fj are short-term plasticity terms
representing short-term depression and short-term facilitation, respectively, and
are described by (as in [11], but see [32])

d

dt
Dj =

1−Dj

τSTD

− rjDjFj (5)

d

dt
Fj =

U − Fj

τSTF

+ U (1− Fj) rj (6)

with τSTD = 1.5s, τSTF = 1s and U = 0.6. If a cell fires continuously for a
given amount of time, eventually Dj drops to 0 thus preventing that cell from
any further synaptic transmissions.
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The inhibitory input, Iinhi , is a global term given as a summation of the
whole network’s activity

d

dt
Iinh = −

Iinh

τ inh
+ winh

∑

j

rjDjFj (7)

with τ inh = 0.05s and winh = 0.1, and acts to prevent too many cells being
active at once.

The σi term in Equation 1 is specific to each cell, representing the intrin-
sic plasticity for that cell. It acts to scale the incoming synaptic inputs and is
described by

d

dt
σi =

σss − σi

τσ
+

σmax − 1

1 + exp [−β(ri − rσ]
(8)

with τσ = 10s, σss = 0.1, σmax = 4, rσ = 10Hz and β = 1. The second term
is a sigmoid, and follows the modelling approach taken by Pang and Fairhall
[25], but with the addition here of time decaying dynamics to model extinction
effects. When the cell no longer fires, σi decays to a steady state value of σss. If
σi > σmax, then σi is set to σmax.

2.3 Two-Stage Dynamics

Implemented here are two different behavioural states that define two different
sets of network dynamics, similar to a previous two-stage modelling approach of
CA3 replay dynamics [29].

The first behavioural state is defined as active exploration: the state in which
MiRo is actively searching for the hidden reward. Under this state, it is assumed
there is little to no synaptic transmission across the network due to the effects of
high acetylcholine levels [17], which has been shown experimentally to inhibit the
recurrent post-synaptic inputs in the hippocampal CA3 region [12]. To capture
this effect, λ is set to 0 in Equation 4 thus preventing post-synaptic transmission.

The second behavioural state is defined as quiescent reward, in which MiRo
remains awake yet quiescent whilst it is at the reward point, and is the state
under which reverse replays occur. It is assumed here that acetylcholine levels
have dropped, similar to that found during slow-wave sleep states [17], thus
permitting synaptic transmission in the CA3 network. To model this effect, λ is
set to 1 in Equation 4.
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3 Results

3.1 Searching for a Hidden Reward

The model is run on the MiRo robot in a simulated open arena environment,
having a diameter of 2m (Figure 1) and with simulation time steps of 10ms.
From a random start location, MiRo is left to freely explore its environment
via a basic implementation of a random walk, with the goal of finding a hidden
reward. This is the active exploration phase, and during this phase the network
rates are driven solely by the place specific inputs with no recurrent synaptic
transmissions. There is no synaptic plasticity implemented in this experiment,
and so all weights, wij , are fixed at a value of 1. Figures 2A and 2B show the
activity of the network during active exploration. Due to the distribution of
the place-specific input, no more than 4 cells are active at any one time, though
most often this amounts to no more than 2 or 3 cells being simultaneously active.
This sparse representation during exploration provides a neural representation of
space. Neurons that become active due to the place specific input then undergo
increases in intrinsic plasticity, decaying exponentially (according to Equation
8) when activity in the neuron drops.

Upon reaching the hidden reward location, MiRo pauses and enters the quies-
cent reward phase. Place specific inputs are computed using Equation 3 and are
input into the network via pulses of 0.1s-ON and 1.9s-OFF. Recall that during
this phase, recurrent synaptic conductances are allowed. Due to the increase in
synaptic recurrent conductance and post-synaptic activity being scaled by the
intrinsic plasticity, activity propagates quickly through the network, reinstating
the most recently active cells in a temporally reversed order to that seen dur-
ing exploration. Figure 2C shows the activity of the network midway through a
replay event. Notice the trace in the intrinsic plasticity plots, which transiently
stores the most recent sequence of activity in the network and provides the
mechanism for faithful replays of the recent trajectory. In this instance, many
more cells are found to be simultaneously active, but their time points for peak
activity retain the temporal ordering seen during exploration (Figure 3).

In order to provide a more detailed comparison of the network’s activity
during the exploration phase versus the quiescent phase in which reverse replays
occur, Figure 3 displays a time course plot of the rates for the 14 cells that were
active during exploration in Figure 2A. It is clear in Figure 3 that the temporal
ordering of cell firing during a reverse replay event is preserved in comparison
to the ordering during exploration.
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Fig. 2. Rates (top plots) and intrinsic plasticities (bottom plots) for the 10x10 network
are shown here for the locations marked in the trajectory of Figure 1. These are: A)
MiRo is at the start location. The numbered boxes ranging from 1 to 14 here represent
all cells that were active during the exploration phase and the temporal order in which
they fired during exploration (i.e. cell 1 fired first, cell 14 last). Note however that at
the start point, only the first 4 cells were active. B) MiRo is exploring the environment.
C) MiRo has reached the reward and reverse replays are being initiated. The arrow
indicates the temporal order of firing during this replay event.

3.2 Removing intrinsic plasticity

To show the effects of removing intrinsic plasticity from the model, σi is set to
1 for all cells and the model is run once more on a similar trajectory (Figure 4).
In this instance, rather than a direct replay of the recent trajectory, the activity
in the network displays a divergent replay event across the whole network from
the point of initiation. This effect was similarly seen in the model of Haga and
Fukai [11], who assumed a similar network architecture to this one but did not
model intrinsic plasticity. This shows that the intrinsic plasticity is important
for restricting the replay event to the previously experienced trajectory only.
However, divergent replays could have potential benefits in the learning of goal-
oriented paths (see Discussion).
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Fig. 3. A time course plot of the cell rates for the cells indexed in Figure 2A. The lower
and upper limits in each box plot is 0Hz and 100Hz. Plots on the left show the activities
during exploration, occurring over a time period of approximately 12s. The plots on
the right show the activity during a reverse replay event. Note that Figures 2A, B and
C are snapshots of the network’s activity at times 0s, 5s and 15.8s, respectively.

Fig. 4. Example of a replay event without intrinsic plasticity, where σi = 1 for all neu-
rons. A similar trajectory as in Figures 1/2 is taken here, with reverse replay events
initiated at the same location. The heat maps, from left to right, show the temporal or-
dering of network activity during a replay event. As intrinsic plasticity is homogeneous
across the network, there is no preferential trajectory for the sequence of cell activities
to follow. As such a divergent wave propagates across the whole network from the point
of initiation.
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4 Discussion

We have presented here a biophysical model of a CA3 hippocampal network that
produces fast reverse replays of recently active place cell trajectories. Whilst
the network connectivity remains static and symmetric, the implementation of
intrinsic plasticity produces asymmetries in the network that amplifies incom-
ing synaptic currents, enabling activity to travel through the network along a
trajectory determined by levels of intrinsic plasticity. Intrinsic plasticity was
first introduced as a potential mechanism for hippocampal replays by Pang and
Fairhall [25], but as we are running the model on the MiRo robot, for which
it can very quickly cover a whole area, time decaying dynamics have had to be
included so that the whole network does not become intrinsically potentiated.
Given only a subset of the network becomes potentiated by intrinsic plasticity
(i.e. those cells most recently active), this creates a certain level of sparsity in
the network, and is interesting to compare with a previous computational model
of replay dynamics by Chenkov et al [5] who showed that sparsity in their net-
work was important for generating effective and controlled replays. Yet, whilst
they achieved sparsity by changing the number of synaptic connections, here it
is achieved through intrinsic plasticity changes. These results nonetheless point
towards a level of sparsity that is important for specific and controlled replays.

Another important component in this model for generating stable propaga-
tions of replay sequences is short-term plasticity effects. This mechanism was first
shown by Haga and Fukai [11] in a reverse replay model. It is perhaps a useful
analogy to consider short term plasticity in this instance having the effect of a ‘re-
fractory period’ for activity propagation, in that it prevents further transmission
of activity after a given amount of continuous activity. Refractory periods have
been shown in previous models to ensure stable, unidirectional replays [15, 25].
However, implementing refractory periods requires a model of spiking neurons,
and so modelling short-term plasticity lends itself to rate-based implementations
of replay. This is of course particularly useful in real-time robotic applications
where spiking neuron models may be computationally inefficient. But short-term
plasticity could have a more interesting property during reverse replays. Haga
and Fukai [11] showed that short-term plasticity could generate reversed synap-
tic weight changes. This enables reverse replays to strengthen synaptic traces in
the forwards direction, despite the replay event occurring in the reverse. Thus,
whilst their model produced divergent replay events similar to that seen here
when intrinsic plasticity is removed, the reversed synaptic potentiations proved
useful in generating synaptic traces towards a goal location, even if particular
place cells had not been active during exploration. These could prove useful if,
for instance, the network connectivity provides a neural map of the environ-
ment. Replays could then provide a means to explore trajectories towards goal
locations even for trajectories that have never been physically explored.

A third component of the model that was necessary for appropriately timed
replays was the implementation of a two-stage dynamic, which prevented the net-
work from transmitting recurrent synaptic currents during the exploration phase,
but allowed synaptic transmission during the quiescent reward phase (where
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MiRo sat quietly at the reward location). This was based on findings that sug-
gest different levels of acetylcholine during active exploration and sleep states
[17], which alters CA3 synaptic conductances [12] – higher levels of acetylcholine
inhibit synaptic conductance. However, what is not clear is that acetylcholine
levels drop significantly enough during the quiescent reward state for which re-
verse replays occur, given it follows immediately after exploration [8]. Whilst
levels of acetylcholine have been found to change quickly on the time scale of a
few seconds, at least in the prefrontal cortex [26], it is unclear as to whether this
occurs in the hippocampal CA3 region. What is perhaps interesting to note, how-
ever, is that cholinergic stimulation, which leads to an increase in acetylcholine,
has been shown to suppress hippocampal sharp-wave ripples yet promote theta
oscillations [33]. Given theta activity is found to co-occur with exploratory states
[34], whilst replays occur usually during sharp-wave ripple events [6], this sug-
gests that for reverse replays to arise, acetylcholine levels must phasically drop
during a quiescent reward state to enable sharp-wave ripples.

4.1 Scope for Future Research

We argued previously that, though there are a number of computational models
attempting to explain the dynamics of hippocampal replay, there had been little
in terms of real-world robotic applications of these models [36]. And whilst there
does exist reinforcement learning models that attempt to capture some of the
functional properties of replay [21, 3, 19], they are not biophysical models, nor do
they adopt continuous state-action spaces which are likely necessary for robotic
applications. Thus, though these models may perhaps help answer the question
of why replays are functionally useful, they do not answer how replays emerge.
A complete model of hippocampal replay should ideally answer both these ques-
tions. This work attempts to understand the problem of how hippocampal replay
emerges by utilising robotics to test the models in real-world settings, and in so
doing, could help bridge the gap between those computational models that seek
to understand how replays emerge with those that utilise replays for improving
learning in artificial systems. As noted, reverse replays are particularly thought
to be involved in reinforcement learning, given their reward-modulated occur-
rences [1] and coordinated activity with neurons in the striatum [27, 10]. As
such, an investigation into whether reverse replays could improve learning in
biophysical models of reinforcement learning, such as [35], should be conducted
to further ground these hypotheses in theory.

Finally, in order to generate cell activity that was place specific in this model,
the global x-y coordinates for the robot had to be used which is a biologically un-
realistic property of place cell emergence. Questions remain therefore around how
other models of the hippocampus, ones attempting to understand the emergence
of place cells, grid cells, head direction cells, etc., in this instance particularly
robotic implementations [30, 16], could be consolidated with hippocampal replay
models. For consolidating these dynamics is surely a necessary condition for a
full working model of the hippocampus.
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