55 research outputs found

    Impaired neutralising antibody formation and high transduction efficacy after isolated hepatic perfusion with adenoviral vectors

    Get PDF
    Local adenoviral gene transfer can be performed by means of isolated hepatic perfusion (IHP). This methodology is a very effective and safe way to deliver adenoviral vectors. We studied the immune response after IHP, A decreased neutralising antibody formation was observed, offering possibilities for further research in the field of gene therapy in isolated perfusion settings

    Model of SNARE-Mediated Membrane Adhesion Kinetics

    Get PDF
    SNARE proteins are conserved components of the core fusion machinery driving diverse membrane adhesion and fusion processes in the cell. In many cases micron-sized membranes adhere over large areas before fusion. Reconstituted in vitro assays have helped isolate SNARE mechanisms in small membrane adhesion-fusion and are emerging as powerful tools to study large membrane systems by use of giant unilamellar vesicles (GUVs). Here we model SNARE-mediated adhesion kinetics in SNARE-reconstituted GUV-GUV or GUV-supported bilayer experiments. Adhesion involves many SNAREs whose complexation pulls apposing membranes into contact. The contact region is a tightly bound rapidly expanding patch whose growth velocity increases with SNARE density . We find three patch expansion regimes: slow, intermediate, fast. Typical experiments belong to the fast regime where depends on SNARE diffusivities and complexation binding constant. The model predicts growth velocities s. The patch may provide a close contact region where SNAREs can trigger fusion. Extending the model to a simple description of fusion, a broad distribution of fusion times is predicted. Increasing SNARE density accelerates fusion by boosting the patch growth velocity, thereby providing more complexes to participate in fusion. This quantifies the notion of SNAREs as dual adhesion-fusion agents

    Oral Rabies Vaccination in North America: Opportunities, Complexities, and Challenges

    Get PDF
    Steps to facilitate inter-jurisdictional collaboration nationally and continentally have been critical for implementing and conducting coordinated wildlife rabies management programs that rely heavily on oral rabies vaccination (ORV). Formation of a national rabies management team has been pivotal for coordinated ORV programs in the United States of America. The signing of the North American Rabies Management Plan extended a collaborative framework for coordination of surveillance, control, and research in border areas among Canada, Mexico, and the US. Advances in enhanced surveillance have facilitated sampling of greater scope and intensity near ORV zones for improved rabies management decision-making in real time. The value of enhanced surveillance as a complement to public health surveillance was best illustrated in Ohio during 2007, where 19 rabies cases were detected that were critical for the formulation of focused contingency actions for controlling rabies in this strategically key area. Diverse complexities and challenges are commonplace when applying ORV to control rabies in wild meso-carnivores. Nevertheless, intervention has resulted in notable successes, including the elimination of an arctic fox (Vulpes lagopus) rabies virus variant in most of southern Ontario, Canada, with ancillary benefits of elimination extending into Quebec and the northeastern US. Progress continues with ORV toward preventing the spread and working toward elimination of a unique variant of gray fox (Urocyon cinereoargenteus) rabies in west central Texas. Elimination of rabies in coyotes (Canis latrans) through ORV contributed to the US being declared free of canine rabies in 2007. Raccoon (Procyon lotor) rabies control continues to present the greatest challenges among meso-carnivore rabies reservoirs, yet to date intervention has prevented this variant from gaining a broad geographic foothold beyond ORV zones designed to prevent its spread from the eastern US. Progress continues toward the development and testing of new bait-vaccine combinations that increase the chance for improved delivery and performance in the diverse meso-carnivore rabies reservoir complex in the US

    Neuroadaptations in Human Chronic Alcoholics: Dysregulation of the NF-κB System

    Get PDF
    Anna Ökvist is with Karolinska Institute, Sofia Johansson is with Karolinska Institute, Alexander Kuzmin is with Karolinska Institute, Igor Bazov is with Karolinska Institute, Roxana Merino-Martinez is with Karolinska Institute, Igor Ponomarev is with UT Austin, R. Dayne Mayfield is with UT Austin, R. Adron Harris is with UT Austin, Donna Sheedy is with University of Sydney, Therese Garrick is with University of Sydney, Clive Harper is with University of Sydney, Yasmin L. Hurd is with Mount Sinai School of Medicine, Lars Terenius is with Karolinska Institute, Tomas J. Ekström is with Karolinska Institute, Georgy Bakalkin is with Karolinska Institute and Uppsala University, Tatjana Yakovleva is with Karolinska Institute and Uppsala University.Background -- Alcohol dependence and associated cognitive impairments apparently result from neuroadaptations to chronic alcohol consumption involving changes in expression of multiple genes. Here we investigated whether transcription factors of Nuclear Factor-kappaB (NF-κB) family, controlling neuronal plasticity and neurodegeneration, are involved in these adaptations in human chronic alcoholics. Methods and Findings -- Analysis of DNA-binding of NF-κB (p65/p50 heterodimer) and the p50 homodimer as well as NF-κB proteins and mRNAs was performed in postmortem human brain samples from 15 chronic alcoholics and 15 control subjects. The prefrontal cortex involved in alcohol dependence and cognition was analyzed and the motor cortex was studied for comparison. The p50 homodimer was identified as dominant κB binding factor in analyzed tissues. NF-κB and p50 homodimer DNA-binding was downregulated, levels of p65 (RELA) mRNA were attenuated, and the stoichiometry of p65/p50 proteins and respective mRNAs was altered in the prefrontal cortex of alcoholics. Comparison of a number of p50 homodimer/NF-κB target DNA sites, κB elements in 479 genes, down- or upregulated in alcoholics demonstrated that genes with κB elements were generally upregulated in alcoholics. No significant differences between alcoholics and controls were observed in the motor cortex. Conclusions -- We suggest that cycles of alcohol intoxication/withdrawal, which may initially activate NF-κB, when repeated over years downregulate RELA expression and NF-κB and p50 homodimer DNA-binding. Downregulation of the dominant p50 homodimer, a potent inhibitor of gene transcription apparently resulted in derepression of κB regulated genes. Alterations in expression of p50 homodimer/NF-κB regulated genes may contribute to neuroplastic adaptation underlying alcoholism.This work was supported by grants from the AFA Forsäkring to AK, YLH, TJE and GB, the Research Foundation of the Swedish Alcohol Retail Monopoly (SRA) and Karolinska Institutet to AK, TJE and GB, and the Swedish Science Research Council and the Swedish National Drug Policy Coordinator to GB. The Australian Brain Donor Programs NSW Tissue Resource Centre was supported by The University of Sydney, National Health and Medical Research Council of Australia, Neuroscience Institute of Schizophrenia and Allied Disorders, National Institute of Alcohol Abuse and Alcoholism and NSW Department of Health.Waggoner Center for Alcohol and Addiction Researc

    ATP release via anion channels

    Get PDF
    ATP serves not only as an energy source for all cell types but as an ‘extracellular messenger-for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg2+ and/or H+ salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP4- in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed

    Evidence for direct CP violation in B-0 -> K+pi(-) decays

    Get PDF
    We report evidence for direct CP violation in the decay B-0-->K(+)pi(-) with 253 fb(-1) of data collected with the Belle detector at the KEKB e(+)e(-) collider. Using 275x10(6) B(B) over bar pairs we observe a B-->K(+/-)pi(-/+) signal with 2140+/-53 events. The measured CP violating asymmetry is A(CP)(K(+)pi(-))=-0.101+/-0.025(stat)+/-0.005(syst), corresponding to a significance of 3.9sigma including systematics. We also search for CP violation in the decays B+-->K(+)pi(0) and B+-->pi(+)pi(0). The measured CP violating asymmetries are A(CP)(K(+)pi(0))=0.04+/-0.05(stat)+/-0.02(syst) and A(CP)(pi(+)pi(0))=-0.02+/-0.10(stat)+/-0.01(syst), corresponding to the intervals -0.05< A(CP)(K(+)pi(0))<0.13 and -0.18< A(CP)(pi(+)pi(0))<0.14 at 90% confidence level
    • …
    corecore