1,146 research outputs found

    Multi-tissue transcriptomic-informed in silico investigation of drugs for the treatment of dengue fever disease

    Get PDF
    Transcriptomics, proteomics and pathogen-host interactomics data are being explored for the in silico–informed selection of drugs, prior to their functional evaluation. The effectiveness of this kind of strategy has been put to the test in the current COVID-19 pandemic, and it has been paying off, leading to a few drugs being rapidly repurposed as treatment against SARS-CoV-2 infection. Several neglected tropical diseases, for which treatment remains unavailable, would benefit from informed in silico investigations of drugs, as performed in this work for Dengue fever disease. We analyzed transcriptomic data in the key tissues of liver, spleen and blood profiles and verified that despite transcriptomic differences due to tissue specialization, the common mechanisms of action, “Adrenergic receptor antagonist”, “ATPase inhibitor”, “NF-kB pathway inhibitor” and “Serotonin receptor antagonist”, were identified as druggable (e.g., oxprenolol, digoxin, auranofin and palonosetron, respectively) to oppose the effects of severe Dengue infection in these tissues. These are good candidates for future functional evaluation and clinical trials.Funding was provided by FEDER, Fundo Europeu de Desenvolvimento Regional funds, through the COMPETE 2020, Competitiveness and Internationalization Operational Programme (POCI), Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Inovação, in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274)

    From Re-Emergence to Hyperendemicity: The Natural History of the Dengue Epidemic in Brazil

    Get PDF
    The spread of dengue virus is a major public health problem. Though the burden of dengue has historically been concentrated in Southeast Asian countries, Brazil has become the country that reports the largest number of cases in the world. While prior to 2007 the disease affected mostly adults, during the 2007 epidemic the number of dengue hemorrhagic fever cases more than doubled, and over 53% of cases were in children under 15 years of age. In this paper, we propose that the conditions for the shift were being set gradually since the re-introduction of dengue in 1986 and that they represent the transition from re-emergence to hyperendemicity. Using data from an age stratified seroprevalence study conducted in Recife, we estimated the force of infection (a measure of transmission intensity) between 1986–2006 and used these estimates to simulate the accumulation of immunity since the re-emergence. As the length of time that dengue has circulated increases, adults have a lower probability of remaining susceptible to primary or secondary infection and thus, cases become on average younger. If in fact the shift represents the transition from re-emergence to hyperendemicity, similar shifts are likely to be observed in the rest of Brazil, the American continent and other regions where transmission emerges

    Dengue: a continuing global threat.

    Get PDF
    Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ∼50 million dengue infections and ∼500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future

    Serotype-Specific Differences in the Risk of Dengue Hemorrhagic Fever: An Analysis of Data Collected in Bangkok, Thailand from 1994 to 2006

    Get PDF
    The four dengue viruses (DENV) represent the most common human arbovirus infections in the world and are currently a challenging problem, particularly in the tropical and subtropical regions of Asia and the Americas. Infection with DENV may produce symptoms of varying severity. While access to care, appropriate interventions, host genetic factors, and previous exposure to DENV are all known to affect the outcome of the infection, it is not entirely understood why some individuals develop more severe disease. It has been hypothesized that the four dengue serotypes differ in disease severity and clinical manifestations. This analysis assessed whether there were significant differences in severity of disease caused by the dengue serotypes in a pediatric population in Thailand. We found significant and non-significant correlations between dengue serotype 2 infection and more severe dengue disease. We also found that individual serotypes varied in disease severity between study years, perhaps supporting the hypothesis that the particular sequences of primary and secondary DENV infections influence disease severity

    The impact of the demographic transition on dengue in Thailand: Insights from a statistical analysis and mathematical modeling

    Get PDF
    Background: An increase in the average age of dengue hemorrhagic fever (DHF) cases has been reported in Thailand. The cause of this increase is not known. Possible explanations include a reduction in transmission due to declining mosquito populations, declining contact between human and mosquito, and changes in reporting. We propose that a demographic shift toward lower birth and death rates has reduced dengue transmission and lengthened the interval between large epidemics. Methods and Findings: Using data from each of the 72 provinces of Thailand, we looked for associations between force of infection (a measure of hazard, defined as the rate per capita at which susceptible individuals become infected) and demographic and climactic variables. We estimated the force of infection from the age distribution of cases from 1985 to 2005. We find that the force of infection has declined by 2% each year since a peak in the late 1970s and early 1980s. Contrary to recent findings suggesting that the incidence of DHF has increased in Thailand, we find a small but statistically significant decline in DHF incidence since 1985 in a majority of provinces. The strongest predictor of the change in force of infection and the mean force of infection is the median age of the population. Using mathematical simulations of dengue transmission we show that a reduced birth rate and a shift in the population's age structure can explain the shift in the age distribution of cases, reduction of the force of infection, and increase in the periodicity of multiannual oscillations of DHF incidence in the absence of other changes. Conclusions: Lower birth and death rates decrease the flow of susceptible individuals into the population and increase the longevity of immune individuals. The increase in the proportion of the population that is immune increases the likelihood that an infectious mosquito will feed on an immune individual, reducing the force of infection. Though the force of infection has decreased by half, we find that the critical vaccination fraction has not changed significantly, declining from an average of 85% to 80%. Clinical guidelines should consider the impact of continued increases in the age of dengue cases in Thailand. Countries in the region lagging behind Thailand in the demographic transition may experience the same increase as their population ages. The impact of demographic changes on the force of infection has been hypothesized for other diseases, but, to our knowledge, this is the first observation of this phenomenon

    Dengue-1 Envelope Protein Domain III along with PELC and CpG Oligodeoxynucleotides Synergistically Enhances Immune Responses

    Get PDF
    The major weaknesses of subunit vaccines are their low immunogenicity and poor efficacy. Adjuvants can help to overcome some of these inherent defects with subunit vaccines. Here, we evaluated the efficacy of the newly developed water-in-oil-in-water multiphase emulsion system, termed PELC, in potentiating the protective capacity of dengue-1 envelope protein domain III. Unlike aluminum phosphate, dengue-1 envelope protein domain III formulated with PELC plus CpG oligodeoxynucleotides induced neutralizing antibodies against dengue-1 virus and increased the splenocyte secretion of IFN-γ after in vitro re-stimulation. The induced antibodies contained both the IgG1 and IgG2a subclasses. A rapid anamnestic neutralizing antibody response against a live dengue virus challenge was elicited at week 26 after the first immunization. These results demonstrate that PELC plus CpG oligodeoxynucleotides broaden the dengue-1 envelope protein domain III-specific immune responses. PELC plus CpG oligodeoxynucleotides is a promising adjuvant for recombinant protein based vaccination against dengue virus

    Spatial point analysis based on dengue surveys at household level in central Brazil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue virus (DENV) affects nonimunne human populations in tropical and subtropical regions. In the Americas, dengue has drastically increased in the last two decades and Brazil is considered one of the most affected countries. The high frequency of asymptomatic infection makes difficult to estimate prevalence of infection using registered cases and to locate high risk intra-urban area at population level. The goal of this spatial point analysis was to identify potential high-risk intra-urban areas of dengue, using data collected at household level from surveys.</p> <p>Methods</p> <p>Two household surveys took place in the city of Goiania (~1.1 million population), Central Brazil in the year 2001 and 2002. First survey screened 1,586 asymptomatic individuals older than 5 years of age. Second survey 2,906 asymptomatic volunteers, same age-groups, were selected by multistage sampling (census tracts; blocks; households) using available digital maps. Sera from participants were tested by dengue virus-specific IgM/IgG by EIA. A Generalized Additive Model (GAM) was used to detect the spatial varying risk over the region. Initially without any fixed covariates, to depict the overall risk map, followed by a model including the main covariates and the year, where the resulting maps show the risk associated with living place, controlled for the individual risk factors. This method has the advantage to generate smoothed risk factors maps, adjusted by socio-demographic covariates.</p> <p>Results</p> <p>The prevalence of antibody against dengue infection was 37.3% (95%CI [35.5–39.1]) in the year 2002; 7.8% increase in one-year interval. The spatial variation in risk of dengue infection significantly changed when comparing 2001 with 2002, (ORadjusted = 1.35; p < 0.001), while controlling for potential confounders using GAM model. Also increasing age and low education levels were associated with dengue infection.</p> <p>Conclusion</p> <p>This study showed spatial heterogeneity in the risk areas of dengue when using a spatial multivariate approach in a short time interval. Data from household surveys pointed out that low prevalence areas in 2001 surveys shifted to high-risk area in consecutive year. This mapping of dengue risks should give insights for control interventions in urban areas.</p

    Evaluation of envelope domain III-based single chimeric tetravalent antigen and monovalent antigen mixtures for the detection of anti-dengue antibodies in human sera

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flavivirus cross-reactive antibodies in human sera interfere with the definitive identification of dengue virus (DENV) infections especially in areas with multiple co-circulating flaviviruses. Use of DENV envelope domain-III (EDIII) can partially resolve the problem. This study has examined the effect of (i) incorporating the EDIIIs of four DENV serotypes into a single chimeric antigen, and (ii) immobilizing the antigen through specific interaction on the sensitivity and specificity of anti-DENV antibody detection.</p> <p>Methods</p> <p>A sera panel (n = 164) was assembled and characterized using commercial kits for infection by DENV and a host of other pathogens. Anti-DENV antibodies of both IgM and IgG classes in this panel were detected in indirect ELISAs using a mixture of monovalent EDIIIs, a chimeric EDIII-based tetravalent antigen, EDIII-T, and a biotinylated version of the latter as coating antigens. The sensitivity and specificity of these assays were compared to those obtained using the PanBio Dengue IgG/IgM ELISAs.</p> <p>Results</p> <p>The performance of dengue IgG and IgM indirect ELISAs, using either a physical mixture of four EDIIIs or the single chimeric EDIII-T antigen, were comparable. Coating of a biotinylated version of the tetravalent antigen on streptavidin plates enhanced sensitivity without compromising specificity.</p> <p>Conclusions</p> <p>The incorporation of the EDIIIs of the four DENV serotypes into a single chimeric antigen did not adversely affect assay outcome in indirect ELISAs. Oriented, rather than random, immobilization of the tetravalent antigen enhanced sensitivity of detection of anti-DENV antibodies with retention of 100% specificity.</p

    Estimating Dengue Transmission Intensity from Case-Notification Data from Multiple Countries

    No full text
    Despite being the most widely distributed mosquito-borne viral infection, estimates of dengue transmission intensity and associated burden remain ambiguous. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing the burden of disease and the likely impact of interventions.We estimated the force of infection (λ) and corresponding basic reproduction numbers (R0) by fitting catalytic models to age-stratified incidence data identified from the literature. We compared estimates derived from incidence and seroprevalence data and assessed the level of under-reporting of dengue disease. In addition, we estimated the relative contribution of primary to quaternary infections to the observed burden of dengue disease incidence. The majority of R0 estimates ranged from one to five and the force of infection estimates from incidence data were consistent with those previously estimated from seroprevalence data. The baseline reporting rate (or the probability of detecting a secondary infection) was generally low (<25%) and varied within and between countries.As expected, estimates varied widely across and within countries, highlighting the spatio-temporally heterogeneous nature of dengue transmission. Although seroprevalence data provide the maximum information, the incidence models presented in this paper provide a method for estimating dengue transmission intensity from age-stratified incidence data, which will be an important consideration in areas where seroprevalence data are not available
    corecore