13 research outputs found

    Unexpectedly high burden of rotavirus gastroenteritis in very young infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The highest incidence of rotavirus gastroenteritis has generally been reported in children 6-24 months of age. Young infants are thought to be partially protected by maternal antibodies acquired transplacentally or via breast milk. The purpose of our study was to assess the age distribution of children with confirmed community-acquired rotavirus gastroenteritis presenting to an urban referral hospital.</p> <p>Methods</p> <p>Children presenting to The Children's Hospital of Philadelphia with acute gastroenteritis have been monitored for the presence of rotavirus antigen in the stool by ELISA (followed by genotyping if ELISA-positive) since the 1994-95 epidemic season.</p> <p>Results</p> <p>Over the last 12 rotavirus seasons prior to the introduction of the pentavalent rotavirus vaccine in 2006, stool specimens from 1646 patients tested positive for community-acquired rotavirus infection. Gender or age was not recorded in 6 and 5 cases, respectively. Overall, 58% of the cases occurred in boys. G1 was the predominant VP7 serotype, accounting for 72% of cases. The median (IQR) age was 11 (5-21) months. A total of 790 (48%) cases occurred in children outside the commonly quoted peak age range, with 27% in infants <6 months of age and 21% in children >24 months of age. A total of 220 (13%) cases occurred during the first 3 months of life, and the highest number of episodes per month of age [97 (6%)] was observed during the second month of life.</p> <p>Conclusions</p> <p>The incidence of community-acquired rotavirus gastroenteritis monitored over 12 seasons in the prevaccine era at a major university hospital was nearly constant for each month of age during the first year of life, revealing an unexpectedly high incidence of symptomatic rotavirus disease in infants <3 months old. A sizeable fraction of cases occurred in children too young to have been vaccinated according to current recommendations.</p

    Implementing new health interventions in developing countries: why do we lose a decade or more?

    Get PDF
    BACKGROUND: It is unclear how long it takes for health interventions to transition from research and development (R&D) to being used against diseases prevalent in resource-poor countries. We undertook an analysis of the time required to begin implementation of four vaccines and three malaria interventions. We evaluated five milestones for each intervention, and assessed if the milestones were associated with beginning implementation. METHODS: The authors screened WHO databases to determine the number of years between first regulatory approval of interventions, and countries beginning implementation. Descriptive analyses of temporal patterns and statistical analyses using logistic regression and Cox proportional hazard models were used to evaluate associations between five milestones and the beginning of implementation for each intervention. The milestones were: (A) presence of a coordinating group focused on the intervention; (B) availability of an intervention tailored to developing country health systems; (C) international financing commitment, and; (D) initial and (E) comprehensive WHO recommendations. Countries were categorized by World Bank income criteria. RESULTS: Five years after regulatory approval, no low-income countries (LICs) had begun implementing any of the vaccines, increasing to an average of only 4% of LICs after 10 years. Each malaria intervention was used by an average of 7% of LICs after five years and 37% after 10 years. Four of the interventions had similar implementation rates to HepB, while one was slower and one was faster than HepB. A financing commitment and initial WHO recommendation appeared to be temporally associated with the beginning of implementation. The initial recommendation from WHO was the only milestone associated in all statistical analyses with countries beginning implementation (relative rate = 1.97, P > 0.001). CONCLUSIONS: Although possible that four milestones were not associated with countries beginning implementation, we propose an alternative interpretation; that the milestones were not realized early enough in each intervention's development to shorten the time to beginning implementation. We discuss a framework built upon existing literature for consideration during the development of future interventions. Identifying critical milestones and their timing relative to R&D, promises to help new interventions realize their intended public health impact more rapidly

    Linnean Observations – An Architectural Exposé on Landscape in Time

    Get PDF
    This thesis project explores landscape and the transformations that occur to it over time. Using architectural interventions the project sets out to find a way of narrating and emphasising the transformation processes that take place in the landscape, striving to challenge and deepen the understanding of both man’s and nature’s impact on the environment we inhabit. With the backdrop of the city of Uppsala and the well documented findings of Carl Linnaeus’ field studies along his herbal excursion trails called the Herbationes Upsaliensis, this project takes a closer look on one of the trails, the Ultuna trail.  From investigating the trail, a selection of stories representing different types of landscape transformations that have taken place along the trail, has been made. By introducing an alternative trail parallel to the Ultuna trail, lined with architectural interventions, the objective has been to present the Ultuna trail from new perspectives, creating a new way of experiencing of our surroundings.

    The Immune Consequences of Lactate in the Tumor Microenvironment.

    Get PDF
    The tumor microenvironment consists of complex and dynamic networks of cytokines, growth factors, and metabolic products. These contribute to significant alterations in tissue architecture, cell growth, immune cell phenotype, and function. Increased glycolytic flux is commonly observed in solid tumors and is associated with significant changes in metabolites, generating high levels of lactate. While elevated glycolytic flux is a characteristic metabolic adaption of tumor cells, glycolysis is also a key metabolic program utilized by a variety of inflammatory immune cells. As such lactate and the pH changes associated with lactate transport affect not only tumor cells but also immune cells. Here we provide an overview of lactate metabolic pathways and the effects lactate has on tumor growth and immune cell function. This knowledge provides opportunities for synergistic therapeutic approaches that combine metabolic drugs, which limit tumor growth and support immune cell function, together with immunotherapies to enhance tumor eradication
    corecore