3,510 research outputs found

    Apparent Diffusion Coefficient Assessment of Brain Development in Normal Fetuses and Ventriculomegaly

    Get PDF
    Diffusion neuro-MRI has benefited significantly from sophisticated pre-processing procedures aimed at improving image quality and diagnostic. In this work, diffusion-weighted imaging (DWI) was used with artifact correction and the apparent diffusion coefficient (ADC) was quantified to investigate fetal brain development. The DWI protocol was designed in order to limit the acquisition time and to estimate ADC without perfusion bias. The ADC in normal fetal brains was compared to cases with isolated ventriculomegaly (VM), a common fetal disease whose DWI studies are still scarce. DWI was performed in 58 singleton fetuses (Gestational age (GA) range: 19–38w) at 1.5T. In 31 cases, VM was diagnosed on ultrasound. DW-Spin Echo EPI with b-values = 50, 200, 700 s/mm2 along three orthogonal axes was used. All images were corrected for noise, Gibbs-ringing, and motion artifacts. The signal-to-noise ratio (SNR) was calculated and the ADC was measured with a linear least-squared algorithm. A multi-way ANOVA was used to evaluate differences in ADC between normal and VM cases and between second and third trimester in different brain regions. Correlation between ADC and GA was assessed with linear and quadratic regression analysis. Noise and artifact correction considerably increased SNR and the goodness-of-fit. ADC measurements were significantly different between second and third trimester in centrum semiovale, frontal white matter, thalamus, cerebellum and pons of both normal and VM brains (p ≤ 0.03). ADC values were significantly different between normal and VM in centrum semiovale and frontal white matter (p ≤ 0.02). ADC values in centrum semiovale, thalamus, cerebellum and pons linearly decreased with GA both in normal and VM brains, while a quadratic relation with GA was found in basal ganglia and occipital white matter of normal brains and in frontal white matter of VM (p ≤ 0.02). ADC values in all fetal brain regions were lower than those reported in literature where DWI with b = 0 was performed. Conversely, they were in agreement with the results of other authors who measured perfusion and diffusion contributions separately. By optimizing our DWI protocol we achieved an unbiased quantification of brain ADC in reasonable scan time. Our findings suggested that ADC can be a useful biomarker of brain abnormalities associated with VM

    Modelling the nucleon wave function from soft and hard processes

    Get PDF
    Current light-cone wave functions for the nucleon are unsatisfactory since they are in conflict with the data of the nucleon's Dirac form factor at large momentum transfer. Therefore, we attempt a determination of a new wave function respecting theoretical ideas on its parameterization and satisfying the following constraints: It should provide a soft Feynman contribution to the proton's form factor in agreement with data; it should be consistent with current parameterizations of the valence quark distribution functions and lastly it should provide an acceptable value for the \jp \to N \bar N decay width. The latter process is calculated within the modified perturbative approach to hard exclusive reactions. A simultaneous fit to the three sets of data leads to a wave function whose xx-dependent part, the distribution amplitude, shows the same type of asymmetry as those distribution amplitudes constrained by QCD sum rules. The asymmetry is however much more moderate as in those amplitudes. Our distribution amplitude resembles the asymptotic one in shape but the position of the maximum is somewhat shifted.Comment: 32 pages RevTex + PS-file with 5 figures in uu-encoded, compressed fil

    Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb−1 of pp collisions at s=13TeV with the ATLAS experiment

    Get PDF
    A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5)

    Measurement of J/ψ production in association with a W ± boson with pp data at 8 TeV

    Get PDF
    A measurement of the production of a prompt J/ψ meson in association with a W± boson with W± → μν and J/ψ → μ+μ− is presented for J/ψ transverse momenta in the range 8.5–150 GeV and rapidity |yJ/ψ| < 2.1 using ATLAS data recorded in 2012 at the LHC. The data were taken at a proton-proton centre-of-mass energy of s = 8 TeV and correspond to an integrated luminosity of 20.3 fb−1. The ratio of the prompt J/ψ plus W± cross-section to the inclusive W± cross-section is presented as a differential measurement as a function of J/ψ transverse momenta and compared with theoretical predictions using different double-parton-scattering cross-sections. [Figure not available: see fulltext.]
    corecore