Current light-cone wave functions for the nucleon are unsatisfactory since
they are in conflict with the data of the nucleon's Dirac form factor at large
momentum transfer. Therefore, we attempt a determination of a new wave function
respecting theoretical ideas on its parameterization and satisfying the
following constraints: It should provide a soft Feynman contribution to the
proton's form factor in agreement with data; it should be consistent with
current parameterizations of the valence quark distribution functions and
lastly it should provide an acceptable value for the \jp \to N \bar N decay
width. The latter process is calculated within the modified perturbative
approach to hard exclusive reactions. A simultaneous fit to the three sets of
data leads to a wave function whose x-dependent part, the distribution
amplitude, shows the same type of asymmetry as those distribution amplitudes
constrained by QCD sum rules. The asymmetry is however much more moderate as in
those amplitudes. Our distribution amplitude resembles the asymptotic one in
shape but the position of the maximum is somewhat shifted.Comment: 32 pages RevTex + PS-file with 5 figures in uu-encoded, compressed
fil