1,623 research outputs found

    Pulmonary ORMDL3 is critical for induction of Alternaria -induced allergic airways disease

    Get PDF
    Genome-wide association studies have identified the ORM (yeast)-like protein isoform 3 (ORMDL3) gene locus on human chromosome 17q to be a highly significant risk factor for childhood-onset asthma. Objective We sought to investigate in vivo the functional role of ORMDL3 in disease inception. Methods An Ormdl3-deficient mouse was generated and the role of ORMDL3 in the generation of allergic airways disease to the fungal aeroallergen Alternaria alternata was determined. An adeno-associated viral vector was also used to reconstitute ORMDL3 expression in airway epithelial cells of Ormdl3 knockout mice. Results Ormdl3 knockout mice were found to be protected from developing allergic airways disease and showed a marked decrease in pathophysiology, including lung function and airway eosinophilia induced by Alternaria. Alternaria is a potent inducer of cellular stress and the unfolded protein response, and ORMDL3 was found to play a critical role in driving the activating transcription factor 6–mediated arm of this response through Xbp1 and downstream activation of the endoplasmic reticulum–associated degradation pathway. In addition, ORMDL3 mediated uric acid release, another marker of cellular stress. In the knockout mice, reconstitution of Ormdl3 transcript levels specifically in the bronchial epithelium resulted in reinstatement of susceptibility to fungal allergen–induced allergic airways disease. Conclusions This study demonstrates that ORMDL3, an asthma susceptibility gene identified by genome-wide association studies, contributes to key pathways that promote changes in airway physiology during allergic immune responses

    Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction

    Get PDF
    Pseudomonas syringae pv. tabaci 6605 causes wildfire disease on host tobacco plants. To investigate the regulatory mechanism of the expression of virulence, Gac two-Component system-defective mutants, Delta gacA and Delta gacS, and a double mutant, Delta gacA Delta gacS, were generated. These mutants produced smaller amounts of N-acyl homoserine lactones required for quorum sensing, had lost swarming motility, and had reduced expression of virulence-related hrp genes and the algT gene required for exopolysaccharide production. The ability of the mutants to cause disease symptoms in their host tobacco plant was remarkably reduced, while they retained the ability to induce hypersensitive reaction (HR) in the nonhost plants. These results indicated that the Gac two-component system of P. syringae pv. tabaci 6605 is indispensable for virulence on the host plant, but not for HR induction in the nonhost plants.</p

    The Expanding Fireball of Nova Delphini 2013

    Full text link
    A classical nova occurs when material accreting onto the surface of a white dwarf in a close binary system ignites in a thermonuclear runaway. Complex structures observed in the ejecta at late stages could result from interactions with the companion during the common envelope phase. Alternatively, the explosion could be intrinsically bipolar, resulting from a localized ignition on the surface of the white dwarf or as a consequence of rotational distortion. Studying the structure of novae during the earliest phases is challenging because of the high spatial resolution needed to measure their small sizes. Here we report near-infrared interferometric measurements of the angular size of Nova Delphini 2013, starting from one day after the explosion and continuing with extensive time coverage during the first 43 days. Changes in the apparent expansion rate can be explained by an explosion model consisting of an optically thick core surrounded by a diffuse envelope. The optical depth of the ejected material changes as it expands. We detect an ellipticity in the light distribution, suggesting a prolate or bipolar structure that develops as early as the second day. Combining the angular expansion rate with radial velocity measurements, we derive a geometric distance to the nova of 4.54 +/- 0.59 kpc from the Sun.Comment: Published in Nature. 32 pages. Final version available at http://www.nature.com/nature/journal/v515/n7526/full/nature13834.htm

    Effect of temperature anisotropy on various modes and instabilities for a magnetized non-relativistic bi-Maxwellian plasma

    Full text link
    Using kinetic theory for homogeneous collisionless magnetized plasmas, we present an extended review of the plasma waves and instabilities and discuss the anisotropic response of generalized relativistic dielectric tensor and Onsager symmetry properties for arbitrary distribution functions. In general, we observe that for such plasmas only those electromagnetic modes whose magnetic field perturbations are perpendicular to the ambient magneticeld, i.e.,B1 \perp B0, are effected by the anisotropy. However, in oblique propagation all modes do show such anisotropic effects. Considering the non-relativistic bi-Maxwellian distribution and studying the relevant components of the general dielectric tensor under appropriate conditions, we derive the dispersion relations for various modes and instabilities. We show that only the electromagnetic R- and L- waves, those derived from them and the O-mode are affected by thermal anisotropies, since they satisfy the required condition B1\perpB0. By contrast, the perpendicularly propagating X-mode and the modes derived from it (the pure transverse X-mode and Bernstein mode) show no such effect. In general, we note that the thermal anisotropy modifies the parallel propagating modes via the parallel acoustic effect, while it modifies the perpendicular propagating modes via the Larmor-radius effect. In oblique propagation for kinetic Alfven waves, the thermal anisotropy affects the kinetic regime more than it affects the inertial regime. The generalized fast mode exhibits two distinct acoustic effects, one in the direction parallel to the ambient magnetic field and the other in the direction perpendicular to it. In the fast-mode instability, the magneto-sonic wave causes suppression of the firehose instability. We discuss all these propagation characteristics and present graphic illustrations

    Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.

    Get PDF
    Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated&nbsp;burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated&nbsp;chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals

    Peritoneal dialysis prescription in children: bedside principles for optimal practice

    Get PDF
    There is no unique optimal peritoneal dialysis prescription for all children, although the goals of ultrafiltration and blood purification are universal. In turn, a better understanding of the physiology of the peritoneal membrane, as a dynamic dialysis membrane with an exchange surface area recruitment capacity and unique permeability characteristics, results in the transition from an empirical prescription process based on clinical experience alone to the potential for a personalized prescription with individually adapted fill volumes and dwell times. In all cases, the prescribed exchange fill volume should be scaled for body surface area (ml/m2), and volume enhancement should be conducted based on clinical tolerance and intraperitoneal pressure measurements (IPP; cmH2O). The exchange dwell times should be determined individually and adapted to the needs of the patient, with particular attention to phosphate clearance and ultrafiltration capacity. The evolution of residual kidney function and the availability of new, more physiologic, peritoneal dialysis fluids (PDFs) also influence the prescription process. An understanding of all of these principles is integral to the provision of clinically optimal PD

    Population diversity and function of hyperpolarization-activated current in olfactory bulb mitral cells

    Get PDF
    Although neurons are known to exhibit a broad array of intrinsic properties that impact critically on the computations they perform, very few studies have quantified such biophysical diversity and its functional consequences. Using in vivo and in vitro whole-cell recordings here we show that mitral cells are extremely heterogeneous in their expression of a rebound depolarization (sag) at hyperpolarized potentials that is mediated by a ZD7288-sensitive current with properties typical of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. The variability in sag expression reflects a functionally diverse population of mitral cells. For example, those cells with large amplitude sag exhibit more membrane noise, a lower rheobase and fire action potentials more regularly than cells where sag is absent. Thus, cell-to-cell variability in sag potential amplitude reflects diversity in the integrative properties of mitral cells that ensures a broad dynamic range for odor representation across these principal neurons

    Macrophage-Specific ApoE Gene Repair Reduces Diet-Induced Hyperlipidemia and Atherosclerosis in Hypomorphic Apoe Mice

    Get PDF
    Apolipoprotein (apo) E is best known for its ability to lower plasma cholesterol and protect against atherosclerosis. Although the liver is the major source of plasma apoE, extra-hepatic sources of apoE, including from macrophages, account for up to 10% of plasma apoE levels. This study examined the contribution of macrophage-derived apoE expression levels in diet-induced hyperlipidemia and atherosclerosis.Hypomorphic apoE (Apoe(h/h)) mice expressing wildtype mouse apoE at ∼2-5% of physiological levels in all tissues were derived by gene targeting in embryonic stem cells. Cre-mediated gene repair of the Apoe(h/h) allele in Apoe(h/h)LysM-Cre mice raised apoE expression levels by 26 fold in freshly isolated peritoneal macrophages, restoring it to 37% of levels seen in wildtype mice. Chow-fed Apoe(h/h)LysM-Cre and Apoe(h/h) mice displayed similar plasma apoE and cholesterol levels (55.53±2.90 mg/dl versus 62.70±2.77 mg/dl, n = 12). When fed a high-cholesterol diet (HCD) for 16 weeks, Apoe(h/h)LysM-Cre mice displayed a 3-fold increase in plasma apoE and a concomitant 32% decrease in plasma cholesterol when compared to Apoe(h/h) mice (602.20±22.30 mg/dl versus 888.80±24.99 mg/dl, n = 7). On HCD, Apoe(h/h)LysM-Cre mice showed increased apoE immunoreactivity in lesional macrophages and liver-associated Kupffer cells but not hepatocytes. In addition, Apoe(h/h)LysM-Cre mice developed 35% less atherosclerotic lesions in the aortic root than Apoe(h/h) mice (167×10(3)±16×10(3) µm(2) versus 259×10(3)±56×10(3) µm(2), n = 7). This difference in atherosclerosis lesions size was proportional to the observed reduction in plasma cholesterol.Macrophage-derived apoE raises plasma apoE levels in response to diet-induced hyperlipidemia and by such reduces atherosclerosis proportionally to the extent to which it lowers plasma cholesterol levels
    • …
    corecore