17,607 research outputs found

    EEG signals analysis using multiscale entropy for depth of anesthesia monitoring during surgery through artificial neural networks

    Get PDF
    In order to build a reliable index to monitor the depth of anesthesia (DOA), many algorithms have been proposed in recent years, one of which is sample entropy (SampEn), a commonly used and important tool to measure the regularity of data series. However, SampEn only estimates the complexity of signals on one time scale. In this study, a new approach is introduced using multiscale entropy (MSE) considering the structure information over different time scales. The entropy values over different time scales calculated through MSE are applied as the input data to train an artificial neural network (ANN) model using bispectral index (BIS) or expert assessment of conscious level (EACL) as the target. To test the performance of the new index's sensitivity to artifacts, we compared the results before and after filtration by multivariate empirical mode decomposition (MEMD). The new approach via ANN is utilized in real EEG signals collected from 26 patients before and after filtering by MEMD, respectively; the results show that is a higher correlation between index from the proposed approach and the gold standard compared with SampEn. Moreover, the proposed approach is more structurally robust to noise and artifacts which indicates that it can be used for monitoring the DOA more accurately.This research was financially supported by the Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan, which is sponsored by Ministry of Science and Technology (Grant no. MOST103-2911-I-008-001). Also, it was supported by National Chung-Shan Institute of Science & Technology in Taiwan (Grant nos. CSIST-095-V301 and CSIST-095-V302) and National Natural Science Foundation of China (Grant no. 51475342)

    Peer feedback: The learning element of peer assessment

    Get PDF
    This paper focuses on peer feedback in relation to assessment processes. It examines the rationale for peer feedback, emphasizing its potential for enhanced student learning. We draw on relevant literature to argue that the dominance of peer assessment processes using grades can undermine the potential of peer feedback for improving student learning. The paper throws further light on the issue by drawing on a large-scale questionnaire survey of tertiary students (1740) and academics (460) in Hong Kong, supplemented by interview data. The findings indicate that a significant number of academics and students resist peer assessment using grades and that the majority report that students never or rarely grade each other in assessment activities. This paper explores why there is resistance, in particular, by academics to peer assessment and argues the case for a peer feedback process as an end in itself or as a precursor to peer assessment involving the awarding of marks. It also recommends some strategies for promoting peer feedback, through engaging students with criteria and for embedding peer involvement within normal course processes.postprin

    Elemental and Sr-Nd-Pb isotopic geochemistry of Mesozoic mafic intrusions in southern Fujian Province, SE China: Implications for lithospheric mantle evolution

    Get PDF
    Abstract Cretaceous mafic dykes in Fujian province, SE China provide an opportunity to examine the nature of their mantle source and the secular evolution of the Mesozoic lithospheric mantle beneath SE China. The mafic rocks have SiO2 ranging from 47.42 to 55.40 wt %, Al2O3 from 14.0 wt % to 20.4 wt %, CaO from 4.09 to 11.7 wt % and total alkaline (K2O+Na2O) from 2.15 wt % to 6.59 wt %. Two types are recognized based on their REE and primitive mantle-normalized trace element patterns. Type-A is the dominant Mesozoic mafic rock type in SE China and is characterized by enrichment of light rare earth elements (LREE) ((La/Yb)n = 2.85-19.0) and arc-like trace element geochemistry. Type-P has relatively flat REE patterns ((La/Yb)n = 1.68-3.43) and primitive mantle-like trace element patterns except for enrichment of Rb, Ba and Pb. Type-A samples show EMII signatures on the Sr-Nd isotopic diagram, whereas type-P rocks have high initial 143Nd/144Nd ratios (0.5126-0.5128) relative to the type-A rocks (143Nd/144Nd = 0.5124-0.5127). The type-A rocks have 207Pb/204Pb ranging from 15.47 to 15.67 and 206Pb/204Pb from 18.26 to 18.52. All the type-A rocks show a negative correlation between 143Nd/144Nd and 206Pb/204Pb ratios and a positive relationship between 87Sr/86 Sr and206Pb/204Pb ratios, indicating mixing of a depleted mantle source and an EMII component. Geochemical modelling shows that the parental magmas were formed by 5-15 % partial melting of a spinel lherzolite, and contaminated by less than 1 % melt derived from subducted sediment. The type-P magmas were derived from a mantle source unmodified by subduction components. The wide distribution of type-A dykes in SE China suggests that subduction-modified lithospheric mantle was extensive beneath the Cathaysia Block. Geochemical differences between Mesozoic and Cenozoic mafic rocks indicate that lithospheric thinning beneath SE China occurred in two episodes: firstly by heterogeneous modification by subducted components in early Mesozoic times, and later by chemical-mechanical erosion related to convective upwelling of the asthenosphere during Cenozoic times. © 2007 Cambridge University Press.published_or_final_versio

    Electronic Devices Based on Purified Carbon Nanotubes Grown By High Pressure Decomposition of Carbon Monoxide

    Full text link
    The excellent properties of transistors, wires, and sensors made from single-walled carbon nanotubes (SWNTs) make them promising candidates for use in advanced nanoelectronic systems. Gas-phase growth procedures such as the high pressure decomposition of carbon monoxide (HiPCO) method yield large quantities of small diameter semiconducting SWNTs, which are ideal for use in nanoelectronic circuits. As-grown HiPCO material, however, commonly contains a large fraction of carbonaceous impurities that degrade properties of SWNT devices. Here we demonstrate a purification, deposition, and fabrication process that yields devices consisting of metallic and semiconducting nanotubes with electronic characteristics vastly superior to those of circuits made from raw HiPCO. Source-drain current measurements on the circuits as a function of temperature and backgate voltage are used to quantify the energy gap of semiconducting nanotubes in a field effect transistor geometry. This work demonstrates significant progress towards the goal of producing complex integrated circuits from bulk-grown SWNT material.Comment: 6 pages, 4 figures, to appear in Nature Material

    Protein O-Mannosylation in the Murine Brain: Occurrence of Mono-O-Mannosyl Glycans and Identification of New Substrates

    Get PDF
    Protein O-mannosylation is a post-translational modification essential for correct development of mammals. In humans, deficient O-mannosylation results in severe congenital muscular dystrophies often associated with impaired brain and eye development. Although various O-mannosylated proteins have been identified in the recent years, the distribution of O-mannosyl glycans in the mammalian brain and target proteins are still not well defined. In the present study, rabbit monoclonal antibodies directed against the O-mannosylated peptide YAT(α1-Man)AV were generated. Detailed characterization of clone RKU-1-3-5 revealed that this monoclonal antibody recognizes O-linked mannose also in different peptide and protein contexts. Using this tool, we observed that mono-O-mannosyl glycans occur ubiquitously throughout the murine brain but are especially enriched at inhibitory GABAergic neurons and at the perineural nets. Using a mass spectrometry-based approach, we further identified glycoproteins from the murine brain that bear single O-mannose residues. Among the candidates identified are members of the cadherin and plexin superfamilies and the perineural net protein neurocan. In addition, we identified neurexin 3, a cell adhesion protein involved in synaptic plasticity, and inter-alpha-trypsin inhibitor 5, a protease inhibitor important in stabilizing the extracellular matrix, as new O-mannosylated glycoproteins

    Main Progress of Microgravity Sciences and Space Life Sciences Research in China

    Get PDF
    The progress of the research activities on space material sciences, microgravity ‰uid physics and combustion, space life sciences and biotechnology research, fundamental Physics in China are brie‰y summarized in the present paper. The major space missions and experimental results obtained on board the Chinese recoverable/non-recoverable satellites and the Chinese manned spaceship named ``Shen-Zhou'' are presented summarily. The recent main activities of the ground-based studies in China are introduced in brief

    Experiments with Podded Propulsors in Static Azimuthing Conditions

    Get PDF
    The paper presents a comprehensive experimental study of the variations of propulsive characteristics of puller and pusher podded propulsors in static azimuthing open water conditions. A custom designed six-component global dynamometer and a three-component pod dynamometer were used to measure the propulsive performance of a podded unit in pusher and puller configurations in a towing tank. The unit was tested to measure the forces on the whole unit in the three co-ordinate directions as well as thrust and torque of the propeller for a range of advance coefficients combined with the range of static azimuthing angles from +30° to –30° with 5° and 10° increments. The variations in propulsive performance of the unit with change of azimuthing angle and advance speed in the two configurations were examined. The results of the measurements are presented as changes of forces and moments of the propulsor unit with advance coefficients and azimuthing angles. The results illustrate that the axial and side forces and the steering moment are complex functions of the azimuthing angles both for puller and pusher propulsors

    Effects of geometry variations on the performance of podded propulsors

    Get PDF
    This paper presents results and analyses of an experimental study into the effects of geometric parameters on the propulsive characteristics of puller and pusher podded propulsors in straight course open water conditions. Five geometric parameters were chosen for the current study and a design of experiment technique was used to design a series of 16 pods that combined the parameters. Tests on the 16 different pod-strut-propeller combinations in puller and pusher configurations were completed using a custom designed podded propeller test rig. The dynamometry consisted of a six-component global dynamometer and a three-component pod dynamometer. The test rig was used to measure the thrust and torque of the propellers, and forces and moments on the whole unit in the three orthogonal directions. The design of experiment analysis technique was then used to identify the most significant geometric parameters and interaction of parameters that affect propeller thrust, torque and efficiency as well as unit thrust and efficiency in both the puller and pusher configurations. An uncertainty analysis of the measurements is also presented

    Cerebellar defects in Pdss2 conditional knockout mice during embryonic development and in adulthood

    Get PDF
    PDSS2 is a gene that encodes one of the two subunits of trans-prenyl diphosphate synthase that is essential for ubiquinone biosynthesis. It is known that mutations in PDSS2 can cause primary ubiquinone deficiency in humans and a similar disease in mice. Cerebellum is the most often affected organ in ubiquinone deficiency, and cerebellar atrophy has been diagnosed in many infants with this disease. In this study, two Pdss2 conditional knockout mouse lines directed by Pax2-cre and Pcp2-cre were generated to investigate the effect of ubiquinone deficiency on cerebellum during embryonic development and in adulthood, respectively. The Pdss2 f/-; Pax2-cre mouse recapitulates some symptoms of ubiquinone deficiency in infants, including severe cerebellum hypoplasia and lipid accumulation in skeletal muscles at birth. During early cerebellum development (E12.5-14.5), Pdss2 knockout initially causes the delay of radial glial cell growth and neuron progenitor migration, so the growth of mutant cerebellum is retarded. During later development (E15.5-P0), increased ectopic apoptosis of neuroblasts and impaired cell proliferation result in the progression of cerebellum hypoplasia in the mutant. Thus, the mutant cerebellum contains fewer neurons at birth, and the cells are disorganized. The developmental defect of mutant cerebellum does not result from reduced Fgf8 expression before E12.5. Electron microscopy reveals mitochondrial defects and increased autophagic-like vacuolization that may arise in response to abnormal mitochondria in the mutant cerebellum. Nevertheless, the mutant mice die soon after birth probably due to cleft palate and micrognathia, which may result from Pdss2 knockout caused by ectopic Pax2-cre expression in the first branchial arch. On the other hand, the Pdss2 f/-; Pcp2-cre mouse is healthy at birth but gradually loses cerebellar Purkinje cells and develops ataxia-like symptoms at 9.5months; thus this conditional knockout mouse may serve as a model for ubiquinone deficiency in adult patients. In conclusion, this study provides two mouse models of Pdss2 based ubiquinone deficiency. During cerebellum development, Pdss2 knockout results in severe cerebellum hypoplasia by impairing cell migration and eliciting ectopic apoptosis, whereas Pdss2 knockout in Purkinje cells at postnatal stages leads to the development of cerebellar ataxia. © 2011 Elsevier Inc.postprin
    • …
    corecore