35 research outputs found

    Macrophage-Specific ApoE Gene Repair Reduces Diet-Induced Hyperlipidemia and Atherosclerosis in Hypomorphic Apoe Mice

    Get PDF
    Apolipoprotein (apo) E is best known for its ability to lower plasma cholesterol and protect against atherosclerosis. Although the liver is the major source of plasma apoE, extra-hepatic sources of apoE, including from macrophages, account for up to 10% of plasma apoE levels. This study examined the contribution of macrophage-derived apoE expression levels in diet-induced hyperlipidemia and atherosclerosis.Hypomorphic apoE (Apoe(h/h)) mice expressing wildtype mouse apoE at ∼2-5% of physiological levels in all tissues were derived by gene targeting in embryonic stem cells. Cre-mediated gene repair of the Apoe(h/h) allele in Apoe(h/h)LysM-Cre mice raised apoE expression levels by 26 fold in freshly isolated peritoneal macrophages, restoring it to 37% of levels seen in wildtype mice. Chow-fed Apoe(h/h)LysM-Cre and Apoe(h/h) mice displayed similar plasma apoE and cholesterol levels (55.53±2.90 mg/dl versus 62.70±2.77 mg/dl, n = 12). When fed a high-cholesterol diet (HCD) for 16 weeks, Apoe(h/h)LysM-Cre mice displayed a 3-fold increase in plasma apoE and a concomitant 32% decrease in plasma cholesterol when compared to Apoe(h/h) mice (602.20±22.30 mg/dl versus 888.80±24.99 mg/dl, n = 7). On HCD, Apoe(h/h)LysM-Cre mice showed increased apoE immunoreactivity in lesional macrophages and liver-associated Kupffer cells but not hepatocytes. In addition, Apoe(h/h)LysM-Cre mice developed 35% less atherosclerotic lesions in the aortic root than Apoe(h/h) mice (167×10(3)±16×10(3) µm(2) versus 259×10(3)±56×10(3) µm(2), n = 7). This difference in atherosclerosis lesions size was proportional to the observed reduction in plasma cholesterol.Macrophage-derived apoE raises plasma apoE levels in response to diet-induced hyperlipidemia and by such reduces atherosclerosis proportionally to the extent to which it lowers plasma cholesterol levels

    Intracellular directed evolution of proteins from combinatorial libraries based on conditional phage replication

    Get PDF
    Directed evolution is a powerful tool to improve the characteristics of biomolecules. Here we present a protocol for the intracellular evolution of proteins with distinct differences and advantages in comparison with established techniques. These include the ability to select for a particular function from a library of protein variants inside cells, minimizing undesired coevolution and propagation of nonfunctional library members, as well as allowing positive and negative selection logics using basally active promoters. A typical evolution experiment comprises the following stages: (i) preparation of a combinatorial M13 phagemid (PM) library expressing variants of the gene of interest (GOI) and preparation of the Escherichia coli host cells; (ii) multiple rounds of an intracellular selection process toward a desired activity; and (iii) the characterization of the evolved target proteins. The system has been developed for the selection of new orthogonal transcription factors (TFs) but is capable of evolving any gene—or gene circuit function—that can be linked to conditional M13 phage replication. Here we demonstrate our approach using as an example the directed evolution of the bacteriophage λ cI TF against two synthetic bidirectional promoters. The evolved TF variants enable simultaneous activation and repression against their engineered promoters and do not cross-react with the wild-type promoter, thus ensuring orthogonality. This protocol requires no special equipment, allowing synthetic biologists and general users to evolve improved biomolecules within ~7 weeks

    α-Syntrophin Modulates Myogenin Expression in Differentiating Myoblasts

    Get PDF
    α-Syntrophin is a scaffolding protein linking signaling proteins to the sarcolemmal dystrophin complex in mature muscle. However, α-syntrophin is also expressed in differentiating myoblasts during the early stages of muscle differentiation. In this study, we examined the relationship between the expression of α-syntrophin and myogenin, a key muscle regulatory factor.The absence of α-syntrophin leads to reduced and delayed myogenin expression. This conclusion is based on experiments using muscle cells isolated from α-syntrophin null mice, muscle regeneration studies in α-syntrophin null mice, experiments in Sol8 cells (a cell line that expresses only low levels of α-syntrophin) and siRNA studies in differentiating C2 cells. In primary cultured myocytes isolated from α-syntrophin null mice, the level of myogenin was less than 50% that from wild type myocytes (p<0.005) 40 h after differentiation induction. In regenerating muscle, the expression of myogenin in the α-syntrophin null muscle was reduced to approximately 25% that of wild type muscle (p<0.005). Conversely, myogenin expression is enhanced in primary cultures of myoblasts isolated from a transgenic mouse over-expressing α-syntrophin and in Sol8 cells transfected with a vector to over-express α-syntrophin. Moreover, we find that myogenin mRNA is reduced in the absence of α-syntrophin and increased by α-syntrophin over-expression. Immunofluorescence microscopy shows that α-syntrophin is localized to the nuclei of differentiating myoblasts. Finally, immunoprecipitation experiments demonstrate that α-syntrophin associates with Mixed-Lineage Leukemia 5, a regulator of myogenin expression.We conclude that α-syntrophin plays an important role in regulating myogenesis by modulating myogenin expression

    Mouse Cofactor of BRCA1 (Cobra1) Is Required for Early Embryogenesis

    Get PDF
    Negative elongation factor (NELF) is a four-subunit protein complex conserved from Drosophila to humans. In vitro biochemical and tissue culture-based studies have demonstrated an important role of NELF in controlling RNA polymerase II (Pol II) pausing in transcription. However, the physiological significance of NELF function is not clear due to the lack of any genetic systems for studying NELF.Here we show that disruption of the mouse B subunit of NELF (NELF-B), also known as cofactor of BRCA1 (Cobra1), causes inner cell mass (ICM) deficiency and embryonic lethality at the time of implantation. Consistent with the phenotype of the Cobra1 knockout (KO) embryos, knockdown of Cobra1 in mouse embryonic stem cells (ESCs) reduces the efficiency of colony formation and increases spontaneous differentiation. Cobra1-depleted ESCs maintain normal levels of Oct4, Nanog, and Sox2, master regulators of pluripotency in ESCs. However, knockdown of Cobra1 leads to precocious expression of developmental regulators including lymphoid enhancer-binding factor 1 (Lef1). Chromatin immunoprecipitation (ChIP) indicates that Cobra1 binds to the Lef1 promoter and modulates the abundance of promoter-bound RNA polymerase.Cobra1 is essential for early embryogenesis. Our findings also indicate that Cobra1 helps maintain the undifferentiated state of mESCs by preventing unscheduled expression of developmental genes

    Sequential Logic Model Deciphers Dynamic Transcriptional Control of Gene Expressions

    Get PDF
    Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here.Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM) is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. is a promising step for further application of the proposed method

    Asymmetric stochastic switching driven by intrinsic molecular noise

    Get PDF
    Low-copy-number molecules are involved in many functions in cells. The intrinsic fluctuations of these numbers can enable stochastic switching between multiple steady states, inducing phenotypic variability. Herein we present a theoretical and computational study based on Master Equations and Fokker-Planck and Langevin descriptions of stochastic switching for a genetic circuit of autoactivation. We show that in this circuit the intrinsic fluctuations arising from low-copy numbers, which are inherently state-dependent, drive asymmetric switching. These theoretical results are consistent with experimental data that have been reported for the bistable system of the gallactose signaling network in yeast. Our study unravels that intrinsic fluctuations, while not required to describe bistability, are fundamental to understand stochastic switching and the dynamical relative stability of multiple states

    Changes in biochemical parameters after anterior cruciate ligament injury

    No full text
    We studied the biochemical characteristics of human knees with deficient anterior cruciate ligaments (ACL) and analysed their relationship to the time after ligamentous injury. Thirty-two patients with isolated ACL-injured knees and six healthy volunteers were enrolled. Synovial fluid samples were centrifuged after aspiration during arthroscopic examination, and aliquots of supernatant were frozen and stored at −80°C. The samples were analysed for interleukin (IL)-1β, tumour necrosis factor (TNF)-α, IL-6, matrix metalloproteinase (MMP)-3, and tissue inhibitor of metalloproteinase (TIMP)-1 using commercially available sandwich enzyme-linked immunosorbent assay. In fluid from ACL-injured knees, the average concentrations of IL-6, MMP-3 and TIMP-1 were highly elevated in comparison with normal controls. There was a statistically significant correlation between the concentrations of MMP-3 and IL-6. The IL-6 and TIMP-1 concentrations were interrelated. The concentration of MMP-3 remained high, independent of the duration since the injury, whereas the TIMP-1 and IL-6 levels decreased. The results suggest that the timing of the treatment of an ACL-injured knee might be of importance
    corecore