56 research outputs found

    Effects of betel nut on cardiovascular risk factors in a rat model

    Get PDF
    Background: Areca nut (commonly known as betel nut) chewing has been shown to be associated with metabolic syndrome and cardiovascular disease (CVD). The mechanism by which betel nut ingestion could lead to development of CVD is not precisely known; however, dyslipidemia, hyperhomocysteinemia, hypertriglyceridemia and inflammation could be some of the potential risk factors. This study was undertaken to investigate the effects of two dosages of betel nut on homocysteinemia, inflammation and some of the components of metabolic syndrome, such as hypertriglyceridemia, low HDL-cholesterol, obesity and fasting hyperglycemia in a rat model.Methods: Thirty-six adult female Sprague Dawley rats, aged 10–12 weeks were divided into three equal groups. Group-1 served as the control group (n = 12) and received water, whereas groups 2 and 3 were given water suspension of betel nut orally in two dosages, 30 mg and 60 mg, respectively for a period of 5 weeks. At the end of the fifth week, the animals were weighed and sacrificed, blood was collected and liver, kidney, spleen and stomach were removed for histological examination. Plasma/serum was analyzed for glucose, total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, homocysteine, folate, vitamin B12 and N-acetyl-β-D-glucosaminidase (NAG) – a marker of inflammation.Results: When the mean concentration values of 3 groups were compared using one way ANOVA followed by Tukey’s HSD-test, there was a significant increase in the concentration of total cholesterol (p = 0.04) in the group receiving 30 mg/day betel nut compared to the control group. However, administration of a higher dose of betel nut (60 mg/day) had no significant effect on the serum concentrations of glucose, total cholesterol, HDL-cholesterol, LDL-cholesterol, and NAG. Histological examination of spleen revealed a dose-dependent extramedullary hematopoiesis. No other remarkable change in the tissues (liver, kidney and stomach) was observed. Mean serum/plasma levels of folate, vitamin B12 and homocysteine were not found to be significantly different in all the groups. Betel nut ingestion had no effect on the mean body weights of rats.Conclusions: Low dosage of betel nut is found to be associated with hypercholesterolemia. However, betel nut ingestion is not associated with hyperhomocysteinemia, hypertriglyceridemia, hyperglycemia, inflammation and increase in body weight in a rat model

    Expression of endothelia and lymphocyte adhesion molecules in bronchus-associated lymphoid tissue (BALT) in adult human lung

    Get PDF
    BACKGROUND: Bronchus-associated lymphoid tissue (BALT) is the secondary lymphoid tissue in bronchial mucosa and is involved in the development of bronchopulmonary immune responses. Although migration of lymphocytes from blood vessels into secondary lymphoid tissues is critical for the development of appropriate adaptive immunity, the endothelia and lymphocyte adhesion molecules that recruit specific subsets of lymphocytes into human BALT are not known. The aim of this study was to determine which adhesion molecules are expressed on lymphocytes and high endothelial venules (HEVs) in human BALT. METHODS: We immunostained frozen sections of BALT from lobectomy specimens from 17 patients with lung carcinoma with a panel of monoclonal antibodies to endothelia and lymphocyte adhesion molecules. RESULTS: Sections of BALT showed B cell follicles surrounded by T cells. Most BALT CD4+ T cells had a CD45RO+ memory phenotype. Almost all BALT B cells expressed alpha4 integrin and L-selectin. In contrast, 43% of BALT T cells expressed alpha4 integrin and 20% of BALT T cells expressed L-selectin. Almost all BALT lymphocytes expressed LFA-1. HEVs, which support the migration of lymphocytes from the bloodstream into secondary lymphoid tissues, were prominent in BALT. All HEVs expressed peripheral node addressin, most HEVs expressed vascular cell adhesion molecule-1, and no HEVs expressed mucosal addressin cell adhesion molecule-1. CONCLUSION: Human BALT expresses endothelia and lymphocyte adhesion molecules that may be important in recruiting naive and memory/effector lymphocytes to BALT during protective and pathologic bronchopulmonary immune responses

    Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail

    Get PDF
    Reproducibility of in vivo\textit{in vivo} research using the mouse as a model organism depends on many factors, including experimental design, strain or stock, experimental protocols, and methods of data evaluation. Gross and histopathology are often the endpoints of such research and there is increasing concern about the accuracy and reproducibility of diagnoses in the literature. To reproduce histopathological results, the pathology protocol, including necropsy methods and slide preparation, should be followed by interpretation of the slides by a pathologist familiar with reading mouse slides and familiar with the consensus medical nomenclature used in mouse pathology. Likewise, it is important that pathologists are consulted as reviewers of manuscripts where histopathology is a key part of the investigation. The absence of pathology expertise in planning, executing and reviewing in vivo\textit{in vivo} research using mice leads to questionable pathology-based findings and conclusions from studies, even in high-impact journals. We discuss the various aspects of this problem, give some examples from the literature and suggest solutions.This work was supported in part by US National Institutes of Health grants R01 AR049288, CA089713 and R21 AR063781 (to J.P.S.) and by The Warden and Fellows of Robinson College, Cambridge (to P.N.S.)

    In Situ Microscopy Analysis Reveals Local Innate Immune Response Developed around Brucella Infected Cells in Resistant and Susceptible Mice

    Get PDF
    Brucella are facultative intracellular bacteria that chronically infect humans and animals causing brucellosis. Brucella are able to invade and replicate in a broad range of cell lines in vitro, however the cells supporting bacterial growth in vivo are largely unknown. In order to identify these, we used a Brucella melitensis strain stably expressing mCherry fluorescent protein to determine the phenotype of infected cells in spleen and liver, two major sites of B. melitensis growth in mice. In both tissues, the majority of primary infected cells expressed the F4/80 myeloid marker. The peak of infection correlated with granuloma development. These structures were mainly composed of CD11b+ F4/80+ MHC-II+ cells expressing iNOS/NOS2 enzyme. A fraction of these cells also expressed CD11c marker and appeared similar to inflammatory dendritic cells (DCs). Analysis of genetically deficient mice revealed that differentiation of iNOS+ inflammatory DC, granuloma formation and control of bacterial growth were deeply affected by the absence of MyD88, IL-12p35 and IFN-γ molecules. During chronic phase of infection in susceptible mice, we identified a particular subset of DC expressing both CD11c and CD205, serving as a reservoir for the bacteria. Taken together, our results describe the cellular nature of immune effectors involved during Brucella infection and reveal a previously unappreciated role for DC subsets, both as effectors and reservoir cells, in the pathogenesis of brucellosis

    Natural history of SLC11 genes in vertebrates: tales from the fish world

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>SLC11A1/Nramp1 </it>and <it>SLC11A2/Nramp2 </it>genes belong to the <it>SLC11/Nramp </it>family of transmembrane divalent metal transporters, with <it>SLC11A1 </it>being associated with resistance to pathogens and <it>SLC11A2 </it>involved in intestinal iron uptake and transferrin-bound iron transport. Both members of the <it>SLC11 </it>gene family have been clearly identified in tetrapods; however <it>SLC11A1 </it>has never been documented in teleost fish and is believed to have been lost in this lineage during early vertebrate evolution. In the present work we characterized the <it>SLC11 </it>genes in teleosts and evaluated if the roles attributed to mammalian <it>SLC11 </it>genes are assured by other fish specific <it>SLC11 </it>gene members.</p> <p>Results</p> <p>Two different <it>SLC11 </it>genes were isolated in the European sea bass (<it>Dicentrarchus. labrax</it>), and named <it>slc11a2-α </it>and <it>slc11a2-β</it>, since both were found to be evolutionary closer to tetrapods <it>SLC11A2</it>, through phylogenetic analysis and comparative genomics. Induction of <it>slc11a2-α </it>and <it>slc11a2-β </it>in sea bass, upon iron modulation or exposure to <it>Photobacterium damselae </it>spp. <it>piscicida</it>, was evaluated in <it>in vivo </it>or <it>in vitro </it>experimental models. Overall, <it>slc11a2-α </it>was found to respond only to iron deficiency in the intestine, whereas <it>slc11a2-β </it>was found to respond to iron overload and bacterial infection in several tissues and also in the leukocytes.</p> <p>Conclusions</p> <p>Our data suggests that despite the absence of <it>slc11a1</it>, its functions have been undertaken by one of the <it>slc11a2 </it>duplicated paralogs in teleost fish in a case of synfunctionalization, being involved in both iron metabolism and response to bacterial infection. This study provides, to our knowledge, the first example of this type of sub-functionalization in iron metabolism genes, illustrating how conserving the various functions of the SLC11 gene family is of crucial evolutionary importance.</p

    Mesenchymal cell survival in airway and interstitial pulmonary fibrosis

    Get PDF
    Fibrotic reactions in the airways of the lung or the pulmonary interstitium are a common pathologic outcome after exposure to a wide variety of toxic agents, including metals, particles or fibers. The survival of mesenchymal cells (fibroblasts and myofibroblasts) is a key factor in determining whether a fibroproliferative response that occurs after toxic injury to the lung will ultimately resolve or progress to a pathologic state. Several polypeptide growth factors, including members of the platelet-derived growth factor (PDGF) family and the epidermal growth factor (EGF) family, are prosurvival factors that stimulate a replicative and migratory mesenchymal cell phenotype during the early stages of lung fibrogenesis. This replicative phenotype can progress to a matrix synthetic phenotype in the presence of transforming growth factor-β1 (TGF-β1). The resolution of a fibrotic response requires growth arrest and apoptosis of mesenchymal cells, whereas progressive chronic fibrosis has been associated with mesenchymal cell resistance to apoptosis. Mesenchymal cell survival or apoptosis is further influenced by cytokines secreted during Th1 inflammation (e.g., IFN-γ) or Th2 inflammation (e.g., IL-13) that modulate the expression of growth factor activity through the STAT family of transcription factors. Understanding the mechanisms that regulate the survival or death of mesenchymal cells is central to ultimately developing therapeutic strategies for lung fibrosis

    The “zebra spleen”

    No full text
    corecore