82 research outputs found

    Cities, biodiversity and health: we need healthy urban microbiome initiatives

    Get PDF
    Current evidence suggests that biodiverse environmental microbiomes contribute positively to human health and could account for known associations between urban green space and improved health. We summarise the state of knowledge that could inform the development of healthy urban microbiome initiatives (HUMI) to re-connect urban populations to biodiverse microbial communities

    Exposure to airborne bacteria depends upon vertical stratification and vegetation complexity

    Get PDF
    Exposure to biodiverse aerobiomes supports human health, but it is unclear which ecological factors influence exposure. Few studies have investigated near-surface green space aerobiome dynamics, and no studies have reported aerobiome vertical stratification in different urban green spaces. We used columnar sampling and next generation sequencing of the bacterial 16S rRNA gene, combined with geospatial and network analyses to investigate urban green space aerobiome spatio-compositional dynamics. We show a strong effect of habitat on bacterial diversity and network complexity. We observed aerobiome vertical stratification and network complexity that was contingent on habitat type. Tree density, closer proximity, and canopy coverage associated with greater aerobiome alpha diversity. Grassland aerobiomes exhibited greater proportions of putative pathogens compared to scrub, and also stratified vertically. We provide novel insights into the urban ecosystem with potential importance for public health, whereby the possibility of differential aerobiome exposures appears to depend on habitat type and height in the airspace. This has important implications for managing urban landscapes for the regulation of aerobiome exposure

    Mainstreaming microbes across biomes

    Get PDF
    Bacteria, fungi, and other microorganisms in the environment (i.e., environmental microbiomes) provide vital ecosystem services and affecthuman health. Despite their importance, public awareness of environmental microbiomes has lagged behind that of human microbiomes. A keyproblem has been a scarcity of research demonstrating the microbial connections across environmental biomes (e.g., marine, soil) and betweenenvironmental and human microbiomes. We show in the present article, through analyses of almost 10,000 microbiome papers and threeglobal data sets, that there are significant taxonomic similarities in microbial communities across biomes, but very little cross-biome researchexists. This disconnect may be hindering advances in microbiome knowledge and translation. In this article, we highlight current and potentialapplications of environmental microbiome research and the benefits of an interdisciplinary, cross-biome approach. Microbiome scientists needto engage with each other, government, industry, and the public to ensure that research and applications proceed ethically, maximizing thepotential benefits to society

    Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordBiodiversity underlies ecosystem resilience, ecosystem function, sustainable economies, and human well-being. Understanding how biodiversity sustains ecosystems under anthropogenic stressors and global environmental change will require new ways of deriving and applying biodiversity data. A major challenge is that biodiversity data and knowledge are scattered, biased, collected with numerous methods, and stored in inconsistent ways. The Group on Earth Observations Biodiversity Observation Network (GEO BON) has developed the Essential Biodiversity Variables (EBVs) as fundamental metrics to help aggregate, harmonize and interpret biodiversity observation data from diverse sources. Mapping and analysing EBVs can help to evaluate how aspects of biodiversity are distributed geographically and how they change over time. EBVs are also intended to serve as inputs and validation to forecast the status and trends of biodiversity, and to support policy and decision making. Here, we assess the feasibility of implementing Genetic Composition EBVs (Genetic EBVs), which are metrics of within-species genetic variation. We review and bring together numerous areas of the field of genetics and evaluate how each contributes to global and regional genetic biodiversity monitoring with respect to theory, sampling logistics, metadata, archiving, data aggregation, modelling, and technological advances. We propose four Genetic EBVs: (1) genetic diversity; (2) genetic differentiation; (3) inbreeding; and (4) effective population size (Ne). We rank Genetic EBVs according to their relevance, sensitivity to change, generalizability, scalability, feasibility and data availability. We outline the workflow for generating genetic data underlying the Genetic EBVs, and review advances and needs in archiving genetic composition data and metadata. We discuss how Genetic EBVs can be operationalized by visualizing EBVs in space and time across species and by forecasting Genetic EBVs beyond current observations using various modelling approaches. Our review then explores challenges of aggregation, standardization, and costs of operationalizing the Genetic EBVs, as well as future directions and opportunities to maximize their uptake globally in research and policy. The collection, annotation, and availability of genetic data has made major advances in the past decade, each of which contributes to the practical and standardized framework for large-scale genetic observation reporting. Rapid advances in DNA sequencing technology present new opportunities, but also challenges for operationalizing Genetic EBVs for biodiversity monitoring regionally and globally. With these advances, genetic composition monitoring is starting to be integrated into global conservation policy, which can help support the foundation of all biodiversity and species’ long-term persistence in the face of environmental change. We conclude with a summary of concrete steps for researchers and policy makers for advancing operationalization of Genetic EBVs. The technical and analytical foundations of Genetic EBVs are well developed, and conservation practitioners should anticipate their increasing application as efforts emerge to scale up genetic biodiversity monitoring regionally and globally.Natural Environment Research Council (NERC

    Tree species diversity and utilities in a contracting lowland hillside rainforest fragment in Central Vietnam

    Get PDF
    Abstract Background Within the highly bio-diverse ‘Northern Vietnam Lowland Rain Forests Ecoregion’ only small, and mostly highly modified forestlands persist within vast exotic-species plantations. The aim of this study was to elucidate vegetation patterns of a secondary hillside rainforest remnant (elevation 120–330 m, 76 ha) as an outcome of natural processes, and anthropogenic processes linked to changing forest values. Methods In the rainforest remnant tree species and various bio-physical parameters (relating to soils and terrain) were surveyed on forty 20 m × 20 m sized plots. The forest's vegetation patterns and tree diversity were analysed using dendrograms, canonical correspondence analysis, and other statistical tools. Results Forest tree species richness was high (172 in the survey, 94 per hectare), including many endemic species (>16%; some recently described). Vegetation patterns and diversity were largely explained by topography, with colline/sub-montane species present mainly along hillside ridges, and lowland/humid-tropical species predominant on lower slopes. Scarcity of high-value timber species reflected past logging, whereas abundance of light-demanding species, and species valued for fruits, provided evidence of human-aided forest restoration and ‘enrichment’ in terms of useful trees. Exhaustion of sought-after forest products, and decreasing appreciation of non-wood products concurred with further encroachment of exotic plantations in between 2010 and 2015. Regeneration of rare tree species was reduced probably due to forest isolation. Conclusions Despite long-term anthropogenic influences, remnant forests in the lowlands of Vietnam can harbor high plant biodiversity, including many endangered species. Various successive future changes (vanishing species, generalist dominance, and associated forest structural-qualitative changes) are, however, expected to occur in small forest fragments. Lowland forest biodiversity can only be maintained if forest fragments maintain a certain size and/or are connected via corridors to larger forest networks. Preservation of the forests may be fostered using new economic incentive schemes

    Climate change impacts and adaptation in forest management: a review

    Get PDF
    • …
    corecore