14 research outputs found

    Determination of sodium fatty acid in soap Formulation Using Fourier Transform Infrared (FTIR) spectroscopy and multivariate calibrations.

    Get PDF
    Fourier Transform Infrared (FTIR) spectroscopy using an attenuated total reflectance (ATR) accessory has been investigated as a method for the determination of sodium-fatty acid (sodium-FA) in soap formulations. Multivariate calibrations namely partial least squares regression (PLS) and principle component regression (PCR) were developed for the prediction of sodium-FA using spectral ranges on the basis of relevant IR absorption bands related to sodium-FA. The sodium-FA content in soap formulations was predicted accurately at wavenumbers of 1,570–1,550 cm−1, which is specific for RCOO− Na+ vibration. The PLS method was found to be a consistently better predictor when both PLS and principal component regression (PCR) analyses were used for quantification of sodium-FA. Furthermore, FTIR spectroscopy can be an alternative technique to American oil Chemist Society methods which use a titrimetric technique because FTIR offers rapid, easy sample preparation and is friendly to the environment

    Rapid method for the determination of moisture content in biodiesel using FTIR spectroscopy

    No full text
    A new, rapid, and direct method was developed for the determination of moisture content in biodiesel produced from various types of oils using Fourier transform infrared (FTIR) spectroscopy with an attenuated total reflectance (ATR) element. Samples of biodiesels used in this study were produced using sludge palm oil (SPO). The calibration set was prepared by spiking double-distilled water into dried biodiesel samples in ratios (w/w) between 0 and 10% moisture. Absorbance values from the wavelength regions 3,700–3,075 and 1,700–1,500 cm-1, and the partial least square (PLS) regression method were used to derive a FTIR spectroscopic calibration model for moisture content in biodiesel samples. The coefficient of determinations (R2) for the models was computed by comparing the results obtained from FTIR spectroscopy against the values of the moisture concentrations (%) determined using the American Oil Chemists’ Society (AOCS) oven method Ca 2d-25. Same comparison was done using International Union of Pure and Applied Chemistry (IUPAC) distillation method 2.602. R2 was 0.9793 and 0.9700 using AOCS and IUPAC methods, respectively. The standard error (SE) of calibration was 1.84. The calibration model was cross validated within the same set of samples, and the standard deviation (SD) of the difference for repeatability (SDDr) and accuracy (SDDa) of the FTIR method was determined. With its speed and ease of data manipulation, FTIR spectroscopy is a useful alternative method to other methods for rapid and routine determination of moisture content in biodiesel for quality control
    corecore