33 research outputs found

    Self-efficacy for coping. Utility of the Cancer behavior inventory (Italian) for use in palliative care

    Get PDF
    Background: Newer models of palliative and supportive cancer care view the person as an active agent in managing physical and psychosocial challenges. Therefore, personal efficacy is an integral part of this model. Due to the lack of instruments in Italian to assess coping self-efficacy, the present study included the translation and validation of the Italian version of the Cancer Behavior Inventory-Brief (CBI-B/I) and an initial analysis of the utility of self-efficacy for coping in an Italian sample of palliative care patients. Methods: 216 advanced cancer patients who attended palliative care clinics were enrolled. The CBI-B/I was administered along with the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30 (EORTC QLQ-C30), the Mini Mental Adjustment to Cancer Scale (Mini-MAC), the Cancer Concerns Checklist (CCL), and the Hospital Anxiety and Depression Scale (HADS). The Eastern Cooperative Oncology Group Performance Status (ECOG-PS) ratings of functional capacity were completed by physicians. Results: Factor analysis confirmed that the structure of the CBI-B/I was consistent with the English version. Internal consistency reliability and significant correlations with the EORTC QLQ-C30, Mini-MAC, and HADS supported the concurrent validity of the CBI-B/I. Differences in CBI-B/I scores for high versus low levels of the CCL and ECOG-PS supported the clinical utility of the CBI-B/I. Conclusions: The CBI-B/I has strong psychometric properties and represents an important addition to newer model of palliative and supportive care. In order to improve clinical practice, the CBI-B/I could be useful in identifying specific self-efficacy goals for coping in structured psychosocial intervention

    Laboratory experiments on cosmic dust analogues: the structure of small carbon grains

    Get PDF
    In this paper we present new results of our experiments aimed to study the internal structure of cosmic analogue carbon grains. The samples, produced by arc discharge between two carbon electrodes in an argon atmosphere, were annealed in the temperature range 250-780°C in order to produce modification of the internal grain structure. These changes were monitored by analysing the variations of the extinction profile between 190 and 2600 nm and of the optical gap as a function of the annealing temperature. The shift of the UV peak position towards longer wavelengths. the overall increase of the extinction coefficient and the closing of the gap as the temperature increases are all consistent with the evolution of carbon grains outlined by Mennella et al. (Astrophys. J., 444, 288, 1995 ; Astrophys. J. Suppl. Ser., 100, 149, 1995). It provides a growth in number and size of the sp2 clusters forming the grains during the annealing. The relevance of the electronic structure of the aromatic clusters in the extinction processes and the dependence of the energy Ï transitions on their size are confirmed by the present results. These results may be relevant in the context of interstellar bump attribution, as they show that the internal structure of small carbon grains is dominant in extinction processes. © 1995

    Shapley Supercluster Survey: Ram-pressure stripping versus tidal interactions in the Shapley supercluster

    Get PDF
    We present two new examples of galaxies undergoing transformation in the Shapley supercluster core. These low-mass (M⋆∼0.4--1×1010M⋆∼0.4--1×1010 M⊙) galaxies are members of the two clusters SC 1329−313 (z ∼ 0.045) and SC 1327−312 (z ∼ 0.049). Integral-field spectroscopy complemented by imaging in the ugriK bands and in Hα narrow band is used to disentangle the effects of tidal interaction (TI) and ram-pressure stripping (RPS). In both galaxies, SOS 61086 and SOS 90630, we observe one-sided extraplanar ionized gas extending respectively ∼30 and ∼41 kpc in projection from their discs. The galaxies' gaseous discs are truncated, and the kinematics of the stellar and gas components are decoupled, supporting the RPS scenario. The emission of the ionized gas extends in the direction of a possible companion for both galaxies suggesting a TI. The overall gas velocity field of SOS 61086 is reproduced by ad hoc N-body/hydrodynamical simulations of RPS acting almost face-on and starting ∼250 Myr ago, consistent with the age of the young stellar populations. A link between the observed gas stripping and the cluster–cluster interaction experienced by SC 1329−313 and A3562 is suggested. Simulations of ram pressure acting almost edge-on are able to fully reproduce the gas velocity field of SOS 90630, but cannot at the same time reproduce the extended tail of outflowing gas. This suggests that an additional disturbance from a TI is required. This study adds a piece of evidence that RPS may take place in different environments with different impacts and witnesses the possible effect of cluster–cluster merger on RPS

    The Wide Field Spectrograph (WiFeS): Performance and Data Reduction

    Full text link
    This paper describes the on-telescope performance of the Wide Field Spectrograph (WiFeS). The design characteristics of this instrument, at the Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) and mounted on the ANU 2.3m telescope at the Siding Spring Observatory has been already described in an earlier paper (Dopita et al. 2007). Here we describe the throughput, resolution and stability of the instrument, and describe some minor issues which have been encountered. We also give a description of the data reduction pipeline, and show some preliminary results.Comment: Accepted for publication in Astrophysics & Space Science, 15pp, 11 figure

    Shapley Supercluster Survey: mapping the dark matter distribution

    Get PDF
    We present a 23deg2^2 weak gravitational lensing survey of the Shapley supercluster core and its surroundings using grigri VST images as part of the Shapley Supercluster Survey (ShaSS). This study reveals the overall matter distribution over a region containing 11 clusters at z0.048z{\sim}0.048 that are all interconnected, as well as several ongoing cluster-cluster interactions. Galaxy shapes have been measured by using the Kaiser-Squires-Broadhurst method for the gg- and rr-band images and background galaxies were selected via the grigri colour-colour diagram. This technique has allowed us to detect all of the clusters, either in the gg-band or rr-band images, although at different σ\sigma levels, indicating that the underlying dark matter distribution is tightly correlated with the number density of the member galaxies. The deeper rr-band images have traced the five interacting clusters in the supercluster core as a single coherent structure, confirmed the presence of a filament extending North from the core, and have revealed a background cluster at z0.17z{\sim}0.17. We have measured the masses of the four richest clusters (A3556, A3558, A3560 and A3562) in the two-dimensional shear pattern, assuming a spherical Navarro-Frenk-White (NFW) profile and obtaining a total mass of MShaSS,WL=1.560.55+0.81×1015M\mathcal{M}_{\rm ShaSS,WL}{=}1.56^{+0.81}_{-0.55}{\times}10^{15\,}{\rm M}_{\odot}, which is consistent with dynamical and X-ray studies. Our analysis provides further evidence of the ongoing dynamical evolution in the ShaSS region.Comment: 16 pages, 11 figures, 4 tables. Accepted for publication in MNRA

    Shapley Supercluster Survey: Construction of the photometric catalogues and i-band data release

    Get PDF
    The Shapley Supercluster Survey is a multi-wavelength survey covering an area of ~23 deg2 (~260 Mpc2 at z = 0.048) around the supercluster core, including nine Abell and two poor clusters, having redshifts in the range 0.045-0.050. The survey aims to investigate the role of the cluster-scale mass assembly on the evolution of galaxies, mapping the effects of the environment from the cores of the clusters to their outskirts and along the filaments. The optical (ugri) imaging acquired with OmegaCAM on the VLT Survey Telescope is essential to achieve the project goals providing accurate multi-band photometry for the galaxy population down to m * + 6. We describe the methodology adopted to construct the optical catalogues and to separate extended and point-like sources. The catalogues reach average 5s limitingmagnitudes within a 3 arcsec diameter aperture of ugri=[24.4,24.6,24.1,23.3] and are 93 per cent complete down to ugri = [23.8,23.8,23.5,22.0] mag, corresponding to ~mr * + 8.5. The data are highly uniform in terms of observing conditions and all acquired with seeing less than 1.1 arcsec full width at half-maximum. The median seeing in r band is 0.6 arcsec, corresponding to 0.56 kpc h70 -1 at z = 0.048. While the observations in the u, g and r bands are still ongoing, the i-band observations have been completed, and we present the i-band catalogue over the whole survey area. The latter is released and it will be regularly updated, through the use of the Virtual Observatory tools. This includes 734 319 sources down to i = 22.0 mag and it is the first optical homogeneous catalogue at such a depth, covering the central region of the Shapley supercluster

    An Interacting Galaxy Pair at the Origin of a Light Echo

    Get PDF
    In a low-density region of the Shapley supercluster we identified an interacting galaxy pair at redshift z = 0.04865 in which the Seyfert 2 nucleus of the main galaxy (ShaSS 073) is exciting an extended emission line region (EELR, ∼170 kpc^2) in the disk of the less massive companion (ShaSS 622). New integral-field spectroscopy and the multiband data set, spanning from far-ultraviolet to far-infrared and radio wavelengths, allowed us to obtain a detailed description of the ShaSS 622-073 system. The gas kinematics shows hints of interaction, although the overall velocity field shows a quite regular rotation in both galaxies, thus suggesting that we are observing their first encounter as confirmed by the estimated distance of 21 kpc between the two galaxy centers. The detected ∼ 2-3 kpc active galactic nucleus (AGN) outflow and the geometry of the EELR in ShaSS 622 support the presence of a hollow bicone structure. The status and sources of the ionization across the whole system have been analyzed through photoionization models and a Bayesian approach that prove a clear connection between the AGN and the EELR. The luminosity of the AGN (2.4×10^44 erg/s) is a factor of 20 lower than the power needed to excite the gas in the EELR (4.6 ×10^45 erg/s), indicating a dramatic fading of the AGN in the past 3×10^4 yr. ShaSS 073-622 provides all the ingredients listed in the recipe of a light echo where a highly-ionized region maintains memory of a preceding more energetic phase of a now-faded AGN. This is the first case of a light echo observed between two galaxies

    Quantitative experiments to explain the change of seasons

    Get PDF
    The science education literature shows that students have difficulty understanding what causes the seasons. Incorrect explanations are often due to a lack of knowledge about the physical mechanisms underlying this phenomenon. To address this, we present a module in which the students engage in quantitative measurements with a photovoltaic panel to explain changes to the sunray flow on Earth’s surface over the year. The activities also provide examples of energy transfers between the incoming radiation and the environment to introduce basic features of Earth’s climate. The module was evaluated with 45 secondary school students (aged 17–18) and a pre-/posttest research design. Analysis of students’ learning outcomes supports the effectiveness of the proposed activities

    The wide-field, multiplexed, spectroscopic facility WEAVE : survey design, overview, and simulated implementation

    Get PDF
    Funding for the WEAVE facility has been provided by UKRI STFC, the University of Oxford, NOVA, NWO, Instituto de Astrofísica de Canarias (IAC), the Isaac Newton Group partners (STFC, NWO, and Spain, led by the IAC), INAF, CNRS-INSU, the Observatoire de Paris, Région Île-de-France, CONCYT through INAOE, Konkoly Observatory (CSFK), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Lund University, the Leibniz Institute for Astrophysics Potsdam (AIP), the Swedish Research Council, the European Commission, and the University of Pennsylvania.WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼ 3 million stars and detailed abundances for ∼ 1.5 million brighter field and open-cluster stars; (ii) survey ∼ 0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey  ∼ 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z 1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.PostprintPeer reviewe
    corecore