11 research outputs found

    Opioid Facilitation of β-Adrenergic Blockade: A New Pharmacological Condition?

    No full text
    Recently, propranolol was suggested to prevent hyperlactatemia in a child with hypovolemic shock through β-adrenergic blockade. Though it is a known inhibitor of glycolysis, propranolol, outside this observation, has never been reported to fully protect against lactate overproduction. On the other hand, literature evidence exists for a cross-talk between β-adrenergic receptors (protein targets of propranolol) and δ-opioid receptor. In this literature context, it is hypothesized here that anti-diarrheic racecadotril (a pro-drug of thiorphan, an inhibitor of enkephalinases), which, in the cited observation, was co-administered with propranolol, might have facilitated the β-blocker-driven inhibition of glycolysis and resulting lactate production. The opioid-facilitated β-adrenergic blockade would be essentially additivity or even synergism putatively existing between antagonism of β-adrenergic receptors and agonism of δ-opioid receptor in lowering cellular cAMP and dependent functions

    Doubling diet fat on sugar ratio in children with mitochondrial OXPHOS disorders: Effects of a randomized trial on resting energy expenditure, diet induced thermogenesis and body composition

    No full text
    International audienceBackground & aims: Mitochondrial OXPHOS disorders (MODs) affect one or several complexes of respiratory chain oxidative phosphorylation. An increased fat/low-carbohydrate ratio of the diet was recommended for treating MODs without, however, evaluating its potential benefits through changes in the respective contributions of cell pathways (glycolysis, fatty acid oxidation) initiating energy production. Therefore, the objective of the present work was to compare Resting Energy Expenditure (REE) under basal diet (BD) and challenging diet (CD) in which fat on sugar content ratio was doubled. Diet-induced thermogenesis (DIT) and body compositions were also compared. Energetic vs regulatory aspects of increasing fat contribution to total nutritional energy input were essentially addressed through measures primarily aiming at modifying total fat amounts and not the types of fats in designed diets.Methods: In this randomized cross-over study, BD contained 10% proteins/30% lipids/60% carbohydrates (fat on sugar ratio = 0.5) and was the imposed diet at baseline. CD contained 10% proteins/45% lipids/45% carbohydrates (fat on sugar ratio = 1). Main and second evaluation criteria measured by indirect calorimetry (QUARK RMR®, Cosmed, Pavona; Italy) were REE and DIT, respectively. Thirty four MOD patients were included; 22 (mean age 13.2 ± 4.7 years, 50% female; BMI 16.9 ± 4.2 kg/m2) were evaluated for REE, and 12 (mean age 13.8 ± 4.8 years, 60% female; BMI 17.4 ± 4.6 kg/m2) also for DIT. OXPHOS complex deficiency repartition in 22 analysed patients was 55% for complex I, 9% for complex III, 27% for complex IV and 9% for other proteins.Results: Neither carry-over nor period effects were detected (p = 0.878; ANOVA for repeated measures). REE was similar between BD vs CD (1148.8 ± 301.7 vs 1156.1 ± 278.8 kcal/day; p = 0.942) as well as DIT (peak DIT 260 vs 265 kcal/day; p = 0.842) and body composition (21.9 ± 13.0 vs 21.6 ± 13.3% of fat mass; p = 0.810).Conclusion: Doubling diet fat on sugar ratio does not appear to improve, per se, energetic status and body composition of patients with MODs

    Le médecin consultant pour les limitations et les arrêts de traitement en pédiatrie

    No full text
    International audienceIn 2005, the French law on patients’ rights at the end of life ratified that decisions to withdraw or withhold life-sustaining treatments must be made and carried out by the physician in charge of the patient, after obtaining the advice of an independent consulting colleague. The purpose of this text is to put forward the perspective of a pediatric multidisciplinary workshop regarding the role of the consulting physician and to propose guidelines to help choose this consultant.La loi du 22 avril 2005 relative aux droits des malades et à la fin de vie (dite « loi Leonetti ») a donné un cadre légal aux décisions de limitation et d’arrêt de traitement (LAT) et a instauré l’obligation d’une délibération collégiale pour les patients hors d’état d’exprimer leur volonté. Les modalités de cette collégialité ont été précisées par le décret du 6 février 2006 qui impose au médecin en charge du patient de prendre l’avis motivé d’un consultant avant toute décision de LAT. Ces dispositions qui ont été intégrées dans l’article 37 du Code de déontologie médicale, nécessitent leur appropriation dans des disciplines dont la culture et la temporalité sont très différentes. En pédiatrie, l’application de cette loi doit tenir compte du rôle des parents puisque, sur le plan légal, l’enfant est représenté par ses parents, qu’il soit ou non en état d’exprimer sa volonté. L’objectif de ce texte est de définir les situations requérant la présence d’un consultant au sens de la loi Leonetti en pédiatrie, de préciser son positionnement et son rôle, et de proposer des éléments d’orientation pour en guider le choix en pratique

    A novel mutation of the ACADM gene (c.145C>G) associated with the common c.985A>G mutation on the other ACADM allele causes mild MCAD deficiency: a case report.

    Get PDF
    International audienceA female patient, with normal familial history, developed at the age of 30 months an episode of diarrhoea, vomiting and lethargy which resolved spontaneously. At the age of 3 years, the patient re-iterated vomiting, was sub-febrile and hypoglycemic, fell into coma, developed seizures and sequels involving right hemi-body. Urinary excretion of hexanoylglycine and suberylglycine was low during this metabolic decompensation. A study of pre- and post-prandial blood glucose and ketones over a period of 24 hours showed a normal glycaemic cycle but a failure to form ketones after 12 hours fasting, suggesting a mitochondrial β-oxidation defect. Total blood carnitine was lowered with unesterified carnitine being half of the lowest control value. A diagnosis of mild MCAD deficiency (MCADD) was based on rates of 1-14C-octanoate and 9, 10-3H-myristate oxidation and of octanoyl-CoA dehydrogenase being reduced to 25% of control values. Other mitochondrial fatty acid oxidation proteins were functionally normal. De novo acylcarnitine synthesis in whole blood samples incubated with deuterated palmitate was also typical of MCADD. Genetic studies showed that the patient was compound heterozygous with a sequence variation in both of the two ACADM alleles; one had the common c.985A>G mutation and the other had a novel c.145C>G mutation. This is the first report for the ACADM gene c.145C>G mutation: it is located in exon 3 and causes a replacement of glutamine to glutamate at position 24 of the mature protein (Q24E). Associated with heterozygosity for c.985A>G mutation, this mutation is responsible for a mild MCADD phenotype along with a clinical story corroborating the emerging literature view that patients with genotypes representing mild MCADD (high residual enzyme activity and low urinary levels of glycine conjugates), similar to some of the mild MCADDs detected by MS/MS newborn screening, may be at risk for disease presentation

    Fluxomic assay-assisted diagnosis orientation in a cohort of 11 patients with myopathic form of CPT2 deficiency

    No full text
    International audienceCarnitine palmitoyltransferase type 2 (CPT2) deficiency, a mitochondrial fatty acid oxidation disorder (MFAOD), is a cause of myopathy in its late clinical presentation. As for other MFAODs, its diagnosis may be evocated when blood acylcarnitine profile is abnormal. However, a lack of abnormalities or specificity in this profile is not exclusive of CPT2 deficiency. Our retrospective study reports clinical and biological data in a cohort of 11 patients with circulating acylcamitine profile unconclusive enough for a specific diagnosis orientation. In these patients, CPT2 gene studies was prompted by prior fluxomic explorations of mitochondrial beta-oxidation on intact whole blood cells incubated with pentadeuterated ([16-H-2(3), 15-H-2(2)])-palmitate. Clinical indication for fluxomic explorations was at least one acute rhabdomyolysis episode complicated, in 5 of 11 patients, by acute renal failure. Major trigger of rhabdomyolysis was febrile infection. In all patients, fluxomic data indicated deficient CPT2 function showing normal deuterated palmitoylcarnitine (C16-Cn) formation rates associated with increased ratios between generated C16-Cn and downstream deuterated metabolites (Sigma deuterated C2-Cn to C14-Cn). Subsequent gene studies showed in all patients pathogenic gene variants in either homozygous or compound heterozygous forms. Consistent with literature data, allelic frequency of the c.338C \textgreater T[p.Ser113Leu] mutation amounted to 68.2% in our cohort. Other missense mutations included c.149C \textgreater A[p.Pro50His] (9%), c.200C \textgreater G[p.A1a200Gly] (4.5%) and previously unreported c.1171A \textgreater G[p.ser391Gly] (4.5%) and c.1420G \textgreater C[p.Ala474Pro] (4.5%) mutations. Frameshift c.1666-1667delTT[p.Leu556val*16] mutation (9%) was observed in two patients unknown to be related

    Targeted-Capture Next-Generation Sequencing in Diagnosis Approach of Pediatric Cholestasis

    Get PDF
    BACKGROUND: Cholestasis is a frequent and severe condition during childhood. Genetic cholestatic diseases represent up to 25% of pediatric cholestasis. Molecular analysis by targeted-capture next generation sequencing (NGS) has recently emerged as an efficient diagnostic tool. The objective of this study is to evaluate the use of NGS in children with cholestasis. METHODS: Children presenting cholestasis were included between 2015 and 2020. Molecular sequencing was performed by targeted capture of a panel of 34 genes involved in cholestasis and jaundice. Patients were classified into three categories: certain diagnosis; suggested diagnosis (when genotype was consistent with phenotype for conditions without any available OMIM or ORPHANET-number); uncertain diagnosis (when clinical and para-clinical findings were not consistent enough with molecular findings). RESULTS: A certain diagnosis was established in 169 patients among the 602 included (28.1%). Molecular studies led to a suggested diagnosis in 40 patients (6.6%) and to an uncertain diagnosis in 21 patients (3.5%). In 372 children (61.7%), no molecular defect was identified. CONCLUSIONS: NGS is a useful diagnostic tool in pediatric cholestasis, providing a certain diagnosis in 28.1% of the patients included in this study. In the remaining patients, especially those with variants of uncertain significance, the imputability of the variants requires further investigations

    Creatine and guanidinoacetate reference values in a French population

    No full text
    International audienceCreatine and guanidinoacetate are biomarkers of creatine metabolism. Their assays in body fluids may be used for detecting patients with primary creatine deficiency disorders (PCDD), a class of inherited diseases. Their laboratory values in blood and urine may vary with age, requiring that reference normal values are given within the age range. Despite the long known role of creatine for muscle physiology, muscle signs are not necessarily the major complaint expressed by PCDD patients. These disorders drastically affect brain function inducing, in patients, intellectual disability, autistic behavior and other neurological signs (delays in speech and language, epilepsy, ataxia, dystonia and choreoathetosis), being a common feature the drop in brain creatine content. For this reason, screening of PCDD patients has been repeatedly carried out in populations with neurological signs. This report is aimed at providing reference laboratory values and related age ranges found for a large scale population of patients with neurological signs (more than 6 thousand patients) previously serving as a background population for screening French patients with PCDD. These reference laboratory values and age ranges compare rather favorably with literature values for healthy populations. Some differences are also observed, and female participants are discriminated from male participants as regards to urine but not blood values including creatine on creatinine ratio and guanidinoacetate on creatinine ratio values. Such gender differences were previously observed in healthy populations; they might be explained by literature differential effects of testosterone and estrogen in adolescents and adults, and by estrogen effects in prepubertal age on SLC6A8 function. Finally, though they were acquired on a population with neurological signs, the present data might reasonably serve as reference laboratory values in any future medical study exploring abnormalities of creatine metabolism and transport.</p
    corecore