6,493 research outputs found

    Density perturbations in the brane-world

    Get PDF
    In Randall-Sundrum-type brane-world cosmologies, density perturbations generate Weyl curvature in the bulk, which in turn backreacts on the brane via stress-energy perturbations. On large scales, the perturbation equations contain a closed system on the brane, which may be solved without solving for the bulk perturbations. Bulk effects produce a non-adiabatic mode, even when the matter perturbations are adiabatic, and alter the background dynamics. As a consequence, the standard evolution of large-scale fluctuations in general relativity is modified. The metric perturbation on large-scales is not constant during high-energy inflation. It is constant during the radiation era, except at most during the very beginning, if the energy is high enough.Comment: Additional arguments and minor corrections; version accepted by Phys. Rev.

    Universal patterns in sound amplitudes of songs and music genres

    Full text link
    We report a statistical analysis over more than eight thousand songs. Specifically, we investigate the probability distribution of the normalized sound amplitudes. Our findings seems to suggest a universal form of distribution which presents a good agreement with a one-parameter stretched Gaussian. We also argue that this parameter can give information on music complexity, and consequently it goes towards classifying songs as well as music genres. Additionally, we present statistical evidences that correlation aspects of the songs are directly related with the non-Gaussian nature of their sound amplitude distributions.Comment: Accepted for publication as a Brief Report in Physical Review

    Order Parameter and Scaling Fields in Self-Organized Criticality

    Full text link
    We present a unified dynamical mean-field theory for stochastic self-organized critical models. We use a single site approximation and we include the details of different models by using effective parameters and constraints. We identify the order parameter and the relevant scaling fields in order to describe the critical behavior in terms of usual concepts of non equilibrium lattice models with steady-states. We point out the inconsistencies of previous mean-field approaches, which lead to different predictions. Numerical simulations confirm the validity of our results beyond mean-field theory.Comment: 4 RevTex pages and 2 postscript figure

    Índice de clorofila foliar nos capins Brachiaria brizantha cv. Piatã e Panicum maximum cv. Mombaça submetidos a diferentes níveis de adubação nitrogenada e potássica.

    Get PDF
    Este trabalho teve por objetivo avaliar o índice de clorofila foliar (ICF) em duas cultivares de gramíneas forrageiras (Brachiaria brizantha cv. Piatã e Panicum maximum cv. Mombaça) em diferentes momentos após a adubação com diferentes doses de nitrogênio (N) e potássio (K) (33-27, 67-53 e 100-80 kg/ha de N-K). O ICF foi medido com clorofilômetro portátil nos seguintes períodos após a adubação: T0 = antes da aplicação dos adubos; T1 = 10 dias e T2 = 20 dias. Não foi observado efeito das doses de N-K sobre o ICF de ambos os capins. Porém, nos períodos T1 e T2, o capim Piatã apresentou ICF maiores (52,11 e 53,38, respectivamente) que os do capim Mombaça (48,15 e 43,11, respectivamente). Os capins Piatã e Mombaça respondem de maneira diferente a adubação nitrogenada e potássica quando se considera o teor de clorofila foliar

    Numerical Study of the Ghost-Gluon Vertex in Landau gauge

    Full text link
    We present a numerical study of the ghost-gluon vertex and of the corresponding renormalization function \widetilde{Z}_1(p^2) in minimal Landau gauge for SU(2) lattice gauge theory. Data were obtained for three different lattice volumes (V = 4^4, 8^4, 16^4) and for three lattice couplings \beta = 2.2, 2.3, 2.4. Gribov-copy effects have been analyzed using the so-called smeared gauge fixing. We also consider two different sets of momenta (orbits) in order to check for possible effects due to the breaking of rotational symmetry. The vertex has been evaluated at the asymmetric point (0;p,-p) in momentum-subtraction scheme. We find that \widetilde{Z}_1(p^2) is approximately constant and equal to 1, at least for momenta p > ~ 1 GeV. This constitutes a nonperturbative verification of the so-called nonrenormalization of the Landau ghost-gluon vertex. Finally, we use our data to evaluate the running coupling constant \alpha_s(p^2).Comment: 19 pages, 6 figures, 9 tables, using axodraw.sty; minor modifications in the abstract, introduction and conclusion

    Reconstruction of metabolic networks from high-throughput metabolite profiling data: in silico analysis of red blood cell metabolism

    Full text link
    We investigate the ability of algorithms developed for reverse engineering of transcriptional regulatory networks to reconstruct metabolic networks from high-throughput metabolite profiling data. For this, we generate synthetic metabolic profiles for benchmarking purposes based on a well-established model for red blood cell metabolism. A variety of data sets is generated, accounting for different properties of real metabolic networks, such as experimental noise, metabolite correlations, and temporal dynamics. These data sets are made available online. We apply ARACNE, a mainstream transcriptional networks reverse engineering algorithm, to these data sets and observe performance comparable to that obtained in the transcriptional domain, for which the algorithm was originally designed.Comment: 14 pages, 3 figures. Presented at the DIMACS Workshop on Dialogue on Reverse Engineering Assessment and Methods (DREAM), Sep 200

    Surveillance of resistance in bacteria causing community‐acquired respiratory tract infections

    Get PDF
    Bacterial resistance to antibiotics in community‐acquired respiratory tract infections is a serious problem and is increasing in prevalence world‐wide at an alarming rate. Streptococcus pneumoniae, one of the main organisms implicated in respiratory tract infections, has developed multiple resistance mechanisms to combat the effects of most commonly used classes of antibiotics, particularly the β‐lactams (penicillin, aminopenicillins and cephalosporins) and macrolides. Furthermore, multidrug‐resistant strains of S. pneumoniae have spread to all regions of the world, often via resistant genetic clones. A similar spread of resistance has been reported for other major respiratory tract pathogens, including Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pyogenes. To develop and support resistance control strategies it is imperative to obtain accurate data on the prevalence, geographic distribution and antibiotic susceptibility of respiratory tract pathogens and how this relates to antibiotic prescribing patterns. In recent years, significant progress has been made in developing longitudinal national and international surveillance programs to monitor antibiotic resistance, such that the prevalence of resistance and underlying trends over time are now well documented for most parts of Europe, and many parts of Asia and the Americas. However, resistance surveillance data from parts of the developing world (regions of Central America, Africa, Asia and Central/Eastern Europe) remain poor. The quantity and quality of surveillance data is very heterogeneous; thus there is a clear need to standardize or validate the data collection, analysis and interpretative criteria used across studies. If disseminated effectively these data can be used to guide empiric antibiotic therapy, and to support—and monitor the impact of—interventions on antibiotic resistance

    Tomograms and other transforms. A unified view

    Full text link
    A general framework is presented which unifies the treatment of wavelet-like, quasidistribution, and tomographic transforms. Explicit formulas relating the three types of transforms are obtained. The case of transforms associated to the symplectic and affine groups is treated in some detail. Special emphasis is given to the properties of the scale-time and scale-frequency tomograms. Tomograms are interpreted as a tool to sample the signal space by a family of curves or as the matrix element of a projector.Comment: 19 pages latex, submitted to J. Phys. A: Math and Ge
    corecore