10,030 research outputs found

    Geometry, stochastic calculus and quantum fields in a non-commutative space-time

    Full text link
    The algebras of non-relativistic and of classical mechanics are unstable algebraic structures. Their deformation towards stable structures leads, respectively, to relativity and to quantum mechanics. Likewise, the combined relativistic quantum mechanics algebra is also unstable. Its stabilization requires the non-commutativity of the space-time coordinates and the existence of a fundamental length constant. The new relativistic quantum mechanics algebra has important consequences on the geometry of space-time, on quantum stochastic calculus and on the construction of quantum fields. Some of these effects are studied in this paper.Comment: 36 pages Latex, 1 eps figur

    Avalanche Collapse of Interdependent Network

    Full text link
    We reveal the nature of the avalanche collapse of the giant viable component in multiplex networks under perturbations such as random damage. Specifically, we identify latent critical clusters associated with the avalanches of random damage. Divergence of their mean size signals the approach to the hybrid phase transition from one side, while there are no critical precursors on the other side. We find that this discontinuous transition occurs in scale-free multiplex networks whenever the mean degree of at least one of the interdependent networks does not diverge.Comment: 4 pages, 5 figure

    Soft singularity and the fundamental length

    Full text link
    It is shown that some regular solutions in 5D Kaluza-Klein gravity may have interesting properties if one from the parameters is in the Planck region. In this case the Kretschman metric invariant runs up to a maximal reachable value in nature, i.e. practically the metric becomes singular. This observation allows us to suppose that in this situation the problems with such soft singularity will be much easier resolved in the future quantum gravity then by the situation with the ordinary hard singularity (Reissner-Nordstr\"om singularity, for example). It is supposed that the analogous consideration can be applied for the avoiding the hard singularities connected with the gauge charges.Comment: 5 page

    Short-time Dynamics of Percolation Observables

    Full text link
    We consider the critical short-time evolution of magnetic and droplet-percolation order parameters for the Ising model in two and three dimensions, through Monte-Carlo simulations with the (local) heat-bath method. We find qualitatively different dynamic behaviors for the two types of order parameters. More precisely, we find that the percolation order parameter does not have a power-law behavior as encountered for the magnetization, but develops a scale (related to the relaxation time to equilibrium) in the Monte-Carlo time. We argue that this difference is due to the difficulty in forming large clusters at the early stages of the evolution. Our results show that, although the descriptions in terms of magnetic and percolation order parameters may be equivalent in the equilibrium regime, greater care must be taken to interprete percolation observables at short times. In particular, this concerns the attempts to describe the dynamics of the deconfinement phase transition in QCD using cluster observables.Comment: 5 pages, 4 figure

    Strong spin-photon coupling in silicon

    Full text link
    We report the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. This result opens the way to the realization of large networks of quantum dot based spin qubit registers, removing a major roadblock to scalable quantum computing with spin qubits

    Transversely projective foliations on surfaces: existence of normal forms and prescription of the monodromy

    Full text link
    We introduce a notion of normal form for transversely projective structures of singular foliations on complex manifolds. Our first main result says that this normal form exists and is unique when ambient space is two-dimensional. From this result one obtains a natural way to produce invariants for transversely projective foliations on surfaces. Our second main result says that on projective surfaces one can construct singular transversely projective foliations with prescribed monodromy

    Estimativa de custo de produção de soja, nos sistemas plantio direto e convencional, safra 1999/2000.

    Get PDF
    bitstream/item/24905/1/Cot19992.pd

    Estimativa de custo de produção de algodão, no sistema plantio convencional, safra 1999/2000.

    Get PDF
    bitstream/item/39711/1/COT-06-1999.pd
    • …
    corecore