We introduce a notion of normal form for transversely projective structures
of singular foliations on complex manifolds. Our first main result says that
this normal form exists and is unique when ambient space is two-dimensional.
From this result one obtains a natural way to produce invariants for
transversely projective foliations on surfaces. Our second main result says
that on projective surfaces one can construct singular transversely projective
foliations with prescribed monodromy