27 research outputs found

    Effect of Sand and Wood-Shavings Bedding on the Behavior of Broiler Chickens

    Get PDF
    The purpose of this study was to determine the effect of 2 different bedding types, sand and wood shavings, on the behavior of broiler chickens. In experiment 1, 6 pens were divided down the center and bedded half with sand and half with wood shavings. Male broilers (10/pen) were observed by scan sampling at 5- or 12-min intervals throughout the 6-wk growth period during the morning (between 0800 to 0900 h), afternoon (1200 to 1500 h), and night (2300 to 0600 h). There was a significant behavior x substrate x week interaction during the day (P \u3c 0.0001) and at night (P \u3c 0.0002). Drinking, dustbathing, preening, and sitting increased in frequency on the sand side but decreased on the wood shavings side during the day, as did resting at night. In general, broilers performed a greater proportion of their total behavioral time budget on the sand (P \u3c 0.0001) as they aged. Broilers used the divider between the 2 bedding types to perch; perching behavior peaked during wk 4. In experiment 2, male broilers were housed in 8 pens (50 birds/pen) bedded only in sand or wood shavings. Bedding type had no effect on behavioral time budgets (P = 0.8946), although there were age-related changes in behavior on both bedding types. These results indicate that when given a choice, broilers increasingly performed many of their behaviors on sand, but if only one bedding type was provided they performed those behaviors with similar frequency on sand or wood shavings

    Poultry welfare in North America: opportunities and challenges

    No full text

    Reverse-translational biomarker validation of Abnormal Repetitive Behaviors in mice: an illustration of the 4P's modeling approach

    No full text
    The NIMH's new strategic plan, with its emphasis on the "4P's" (Prediction, Pre-emption, Personalization, and Populations) and biomarker-based medicine requires a radical shift in animal modeling methodology. In particular 4P's models will be non-determinant (i.e. disease severity will depend on secondary environmental and genetic factors); and validated by reverse-translation of animal homologues to human biomarkers. A powerful consequence of the biomarker approach is that different closely related disorders have a unique fingerprint of biomarkers. Animals can be validated as a highly specific model of a single disorder by matching this 'fingerprint'; or as a model of a symptom seen in multiple disorders by matching common biomarkers. Here we illustrate this approach with two Abnormal Repetitive Behaviors (ARBs) in mice: stereotypies and barbering (hair pulling). We developed animal versions of the neuropsychological biomarkers that distinguish human ARBs, and tested the fingerprint of the different mouse ARBs. As predicted, the two mouse ARBs were associated with different biomarkers. Both barbering and stereotypy could be discounted as models of OCD (even though they are widely used as such), due to the absence of limbic biomarkers which are characteristic of OCD and hence are necessary for a valid model. Conversely barbering matched the fingerprint of trichotillomania (i.e. selective deficits in set-shifting), suggesting it may be a highly specific model of this disorder. In contrast stereotypies were correlated only with a biomarker (deficits in response shifting) correlated with stereotypies in multiple disorders, suggesting that animal stereotypies model stereotypies in multiple disorders

    Guidelines for the ethical use of animals in applied ethology studies

    No full text
    Applied ethology has a continuing interest in the promotion of animal welfare and the ethical treatment of animals used in research. However, in contrast to some other fields involving animal research, there are currently no guidelines written specifically for those engaged in applied ethology studies. We aim here, to provide members of the profession with a basis for structured self-evaluation of the ethical nature of their work, and to serve as inspiration for those planning research involving the use of animals. The first three sections of this document discuss the background to why ethical guidelines are needed in applied ethology studies and the relation between these guidelines and legislation. In the first section, we briefly discuss the relevant ethical principles and decision models. The main body of the guidelines then discuss how 'costs' to the animals in applied ethology research can be minimised (using the principles of replacement, reduction and refinement) and `benefits' maximised. An earlier version of this manuscript was presented to the Annual General Meeting of the International Society of Applied Ethology, which accepted this as the basis of ethical review for papers presented at their International Congresses
    corecore