3,167 research outputs found

    Random-Matrix Theory of Electron Transport in Disordered Wires with Symplectic Symmetry

    Full text link
    The conductance of disordered wires with symplectic symmetry is studied by a random-matrix approach. It has been believed that Anderson localization inevitably arises in ordinary disordered wires. A counterexample is recently found in the systems with symplectic symmetry, where one perfectly conducting channel is present even in the long-wire limit when the number of conducting channels is odd. This indicates that the odd-channel case is essentially different from the ordinary even-channel case. To study such differences, we derive the DMPK equation for transmission eigenvalues for both the even- and odd- channel cases. The behavior of dimensionless conductance is investigated on the basis of the resulting equation. In the short-wire regime, we find that the weak-antilocalization correction to the conductance in the odd-channel case is equivalent to that in the even-channel case. We also find that the variance does not depend on whether the number of channels is even or odd. In the long-wire regime, it is shown that the dimensionless conductance in the even-channel case decays exponentially as --> 0 with increasing system length, while --> 1 in the odd-channel case. We evaluate the decay length for the even- and odd-channel cases and find a clear even-odd difference. These results indicate that the perfectly conducting channel induces clear even-odd differences in the long-wire regime.Comment: 28pages, 5figures, Accepted for publication in J. Phys. Soc. Jp

    B stars as a diagnostic of star-formation at low and high redshift

    Get PDF
    We have extended the evolutionary synthesis models by Leitherer et al. (1999b) by including a new library of B stars generated from the IUE high-dispersion spectra archive. We present the library and show how the stellar spectral properties vary according to luminosity classes and spectral types. We have generated synthetic UV spectra for prototypical young stellar populations varying the IMF and the star formation law. Clear signs of age effects are seen in all models. The contribution of B stars in the UV line spectrum is clearly detected, in particular for greater ages when O stars have evolved. With the addition of the new library we are able to investigate the fraction of stellar and interstellar contributions and the variation in the spectral shapes of intense lines. We have used our models to date the spectrum of the local super star cluster NGC1705-1. Photospheric lines of CIII1247, SiIII1417, and SV1502 were used as diagnostics to date the burst of NGC 1705-1 at 10 Myr. We have selected the star-forming galaxy 1512-cB58 as a first application of the new models to high-z galaxies. This galaxy is at z=2.723, it is gravitationally lensed, and its high signal-to-noise Keck spectrum show features typical of local starburst galaxies, such as NGC 1705-1. Models with continuous star formation were found to be more adequate for 1512-cB58 since there are spectral features typical of a composite stellar population of O and B stars. A model with Z =0.4Z_solar and an IMF with alpha=2.8 reproduces the stellar features of the 1512-cB58 spectrum.Comment: 23 pages with figures, see http://sol.stsci.edu/~demello/welcomeb.htm

    Nonrelativistic Quantum Analysis of the Charged Particle-Dyon System on a Conical Spacetime

    Full text link
    In this paper we develop the nonrelativistic quantum analysis of the charged particle-dyon system in the spacetime produced by an idealized cosmic string. In order to do that, we assume that the dyon is superposed to the cosmic string. Considering this peculiar configuration {\it conical} monopole harmonics are constructed, which are a generalizations of previous monopole harmonics obtained by Wu and Yang(1976 {\it Nucl. Phys. B} {\bf 107} 365) defined on a conical three-geometry. Bound and scattering wave functions are explicitly derived. As to bound states, we present the energy spectrum of the system, and analyze how the presence of the topological defect modifies obtained result. We also analyze this system admitting the presence of an extra isotropic harmonic potential acting on the particle. We show that the presence of this potential produces significant changes in the energy spectrum of the system.Comment: Paper accepted for publication in Classical and Quantum Gravit

    Phase transitions in simplified models with long-range interactions

    Full text link
    We study the origin of phase transitions in some simplified models with long range interactions. For the ring model, we show that a possible new phase transition predicted in a recent paper by Nardini and Casetti from an energy landscape analysis does not occur. Instead of such phase transitions we observe a sharp, although without any non-analiticity, change from a core-halo to an only core configuration in the spatial distribution functions for low energies. By introducing a new class of solvable simplified models without any critical points in the potential energy, we show that a similar behaviour to the ring model is obtained, with a first order phase transition from an almost homogeneous high energy phase to a clustered phase, and the same core-halo to core configuration transition at lower energies. We discuss the origin of these features of the simplified models, and show that the first order phase transition comes from the maximization of the entropy of the system as a function of energy an an order parameter, as previously discussed by Kastner, which seems to be the main mechanism causing phase transitions in long-range interacting systems

    Far-ultraviolet imaging of the Hubble Deep Field-North: Star formation in normal galaxies at z < 1

    Get PDF
    We present far-ultraviolet (FUV) imaging of the Hubble Deep Field-North (HDF-N) taken with the Solar Blind Channel of the Advanced Camera for Surveys (ACS SBC) and the FUV MAMA detector of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. The full WFPC2 deep field has been observed at 1600 Å. We detect 134 galaxies and one star down to a limit of FUV_(AB) ~ 29. All sources have counterparts in the WFPC2 image. Redshifts (spectroscopic or photometric) for the detected sources are in the range 0 < z < 1. We find that the FUV galaxy number counts are higher than those reported by GALEX, which we attribute at least in part to cosmic variance in the small HDF-N field of view. Six of the 13 Chandra sources at z < 0.85 in the HDF-N are detected in the FUV, and those are consistent with starbursts rather than active galactic nuclei. Cross-correlating with Spitzer sources in the field, we find that the FUV detections show general agreement with the expected L_(IR)/L_(UV) versus β relationship. We infer star formation rates (SFRs), corrected for extinction using the UV slope, and find a median value of 0.3 M_☉ yr^(-1) for FUV-detected galaxies, with 75% of detected sources having SFR < 1 M_☉ yr^(-1). Examining the morphological distribution of sources, we find that about half of all FUV-detected sources are identified as spiral galaxies. Half of morphologically selected spheroid galaxies at z < 0.85 are detected in the FUV, suggesting that such sources have had significant ongoing star formation in the epoch since z ~ 1

    Vacuum Polarization of a Charged Massless Scalar Field on Cosmic String Spacetime in the Presence of a Magnetic Field

    Get PDF
    In this paper we consider a charged massless scalar quantum field operator in the spacetime of an idealized cosmic string, i.e., an infinitely long, straight and static cosmic string, which presents a magnetic field confined in a cylindrical tube of finite radius. Three distinct situations are taking into account in this analysis: {\it{i)}} a homogeneous field inside the tube, {\it{ii)}} a magnetic field proportional to 1/r1/r and {\it{iii)}} a cylindrical shell with δ\delta-function. In these three cases the axis of the infinitely long tube of radius RR coincides with the cosmic string. In order to study the vacuum polarization effects outside the tube, we explicitly calculate the Euclidean Green function associated with this system for the three above situations, considering points in the region outside the tube.Comment: 26 pages, LaTex format, 3 figure

    Medium-resolution spectroscopy of galaxies with redshifts 2.3 < z < 3.5

    Full text link
    Using FORS2 at the ESO VLT we obtained medium resolution (R ~ 2000) spectra of 12 galaxies with 2.37 < z < 3.40 in the FORS Deep Field. Two individual spectra with good S/N and a composite of all 12 spectra were used to derive properties of the stellar and interstellar absorption lines of galaxies in this redshift range. Systematic differences between the individual spectra were found for the strength and profiles of the intrinsic interstellar lines. For eight spectra with sufficient S/N we measured the `1370' and `1425' metallicity indices. From these indices we find for our sample that galaxies at z > 3 have lower mean metallicity than galaxies at 2.5 < z < 3. However there remain uncertainties concerning the absolute calibration of the metallicity tracers in use for high-redshift galaxies. Additional modeling will be needed to resolve these uncertainties.Comment: 10 pages, 4 figures. Accepted by A&
    corecore