4,502 research outputs found

    Effective action of a five-dimensional domain wall

    Full text link
    We calculate the four-dimensional low-energy effective action for the perturbations of a two-scalar domain wall model in five dimensions. Comparison of the effective action to the Nambu-Goto action reveals the presence of an additional coupling between the light scalar field and the massless translation mode (branon excitation), which can be written in terms of the curvature scalar of the induced metric. We comment on the impact of this interaction to branon physics.Comment: 24 page

    Measuring the SUSY Breaking Scale at the LHC in the Slepton NLSP Scenario of GMSB Models

    Get PDF
    We report a study on the measurement of the SUSY breaking scale sqrt(F) in the framework of gauge-mediated supersymmetry breaking (GMSB) models at the LHC. The work is focused on the GMSB scenario where a stau is the next-to-lightest SUSY particle (NLSP) and decays into a gravitino with lifetime c*tau_NLSP in the range 0.5 m to 1 km. We study the identification of long-lived sleptons using the momentum and time of flight measurements in the muon chambers of the ATLAS experiment. A realistic evaluation of the statistical and systematic uncertainties on the measurement of the slepton mass and lifetime is performed, based on a detailed simulation of the detector response. Accessible range and precision on sqrt(F) achievable with a counting method are assessed. Many features of our analysis can be extended to the study of different theoretical frameworks with similar signatures at the LHC.Comment: 28 pages, 12 figures (18 eps files). Revised version v2(published in JHEP): Some important corrections and additions to v

    Aspects of GMSB Phenomenology at TeV Colliders

    Get PDF
    The status of two on-going studies concerning important aspects of the phenomenology of gauge-mediated supersymmetry breaking (GMSB) models at TeV colliders is reported. The first study deals with the characteristics of the light Higgs boson spectrum allowed by the (minimal and non-minimal) GMSB framework. Today's most accurate GMSB model generation and two-loop Feynman-diagrammatic calculation of m_h have been combined. The Higgs masses are shown in dependence of various model parameters at the messenger and electroweak scales. In the minimal model, an upper limit on m_h of about 124 GeV is found for m_t = 175 GeV. The second study is focused on the measurement of the fundamental SUSY breaking scale sqrt(F) at the LHC in the GMSB scenario where a stau is the next-to-lightest SUSY particle (NLSP) and decays into a gravitino with c*tau_NLSP in the range 0.5 m to 1 km. This implies the measurement of mass and lifetime of long lived sleptons. The identification is performed by determining the time of flight in the ATLAS muon chambers. Accessible range and precision on sqrt(F) achievable with a counting method are assessed.Comment: 22 pages, 9 figures (12 eps files). Report of the GMSB SUSY Working Group, Workshop "Physics at TeV Colliders", Les Houches, 7-18 June 1999. Revised version v3: A few typos correcte

    Searching for massless dark photons at the lhc via higgs production

    Get PDF
    Massless dark photons are predicted in hidden-sector models with an unbroken dark U(1) gauge symmetry. A particular class of these models, aiming to solve both the Yukawa-hierarchy and the dark-matter problems of the standard model, manifests natural Higgs nondecoupling properties for the dark photon. As a consequence, we show that the Higgs-boson production at colliders followed by the Higgs decay into a photon and a dark photon provides a very promising dark-photon production mechanism. This decay gives rise to an unconventional Higgs signature characterized by a resonating gamma-plus-missing-momentum system with a monochromatic photon. We discuss the sensitivity of the LHC to the corresponding signal for a Higgs boson produced in both gluon-fusion and vector-boson-fusion channels. © Copyright owned by the author(s).Peer reviewe
    • …
    corecore