22 research outputs found

    Origin Of Fluorescence In 11-cis Locked Bovine Rhodopsin

    Get PDF
    The excited state lifetime of bovine rhodopsin (Rh) increases from ca. 100 fs to 85 ps when the C11=C12 bond of its chromophore is locked by a cyclopentene moiety (Rh5). To explain such an increase, we employed ab initio multiconfigurational quantum chemistry to construct computer models of Rh and Rh5 and to investigate the shape of their excited state potential energy surfaces in a comparative way. Our results show that the observed Rh5 fluorescence (lambda(f)(max) = 620 nm) is due to a previously unreported locally excited intermediate whose lifetime is controlled by a small energy barrier. The analysis of the properties and decay path of such an intermediate provides useful information for engineering rhodopsin variants with augmented fluorescence efficiencies

    Mapping The Excited State Potential Energy Surface Of A Retinal Chromophore Model With Multireference And Equation-of-motion Coupled-cluster Methods

    Get PDF
    The photoisomerization of the retinal chromophore of visual pigments proceeds along a complex reaction coordinate on a multidimensional surface that comprises a hydrogen-out-of-plane (HOOP) coordinate, a bond length alternation (BLA) coordinate, a single bond torsion and, finally, the reactive double bond torsion. These degrees of freedom are coupled with changes in the electronic structure of the chromophore and, therefore, the computational investigation of the photochemistry of such systems requires the use of a methodology capable of describing electronic structure changes along all those coordinates. Here, we employ the penta-2,4-dieniminium (PSB3) cation as a minimal model of the retinal chromophore of visual pigments and compare its excited state isomerization paths at the CASSCF and CASPT2 levels of theory. These paths connect the cis isomer and the trans isomer of PSB3 with two structurally and energetically distinct conical intersections (CIs) that belong to the same intersection space. MRCISD+Q energy profiles along these paths provide benchmark values against which other ab initio methods are validated. Accordingly, we compare the energy profiles of MRPT2 methods (CASPT2, QD-NEVPT2, and XMCQDPT2) and EOM-SF-CC methods (EOM-SF-CCSD and EOM-SF-CCSD(dT)) to the MRCISD+Q reference profiles. We find that the paths produced with CASSCF and CASPT2 are topologically and energetically different, partially due to the existence of a locally excited region on the CASPT2 excited state near the Franck-Condon point that is absent in CASSCF and that involves a single bond, rather than double bond, torsion. We also find that MRPT2 methods as well as EOM-SF-CCSD(dT) are capable of quantitatively describing the processes involved in the photoisomerization of systems like PSB3

    Quantum chemical modeling of rhodopsin mutants displaying switchable colors

    No full text
    WOS:000307900800009International audienceWe look at the possibility to compute and understand the color change occurring upon mutation of a photochromic protein. Accordingly, ab initio multiconfigurational quantum chemical methods are used to construct basic quantum-mechanics/molecular-mechanics (QM/MM) models for a small mutant library of the sensory rhodopsin of Anabaena (Nostoc) sp. PCC7120 cyanobacterium. Together with the wild-type forms, a set of 26 absorption maxima spanning a ca. 80 nm range is obtained. We show that these models can be used to capture the electrostatic change controlling the computed color variation and the change in the ionization of specific side chains

    Quantum chemical modeling of rhodopsin mutants displaying switchable colors

    No full text
    WOS:000307900800009International audienceWe look at the possibility to compute and understand the color change occurring upon mutation of a photochromic protein. Accordingly, ab initio multiconfigurational quantum chemical methods are used to construct basic quantum-mechanics/molecular-mechanics (QM/MM) models for a small mutant library of the sensory rhodopsin of Anabaena (Nostoc) sp. PCC7120 cyanobacterium. Together with the wild-type forms, a set of 26 absorption maxima spanning a ca. 80 nm range is obtained. We show that these models can be used to capture the electrostatic change controlling the computed color variation and the change in the ionization of specific side chains

    Comparison of the isomerization mechanisms of human melanopsin and invertebrate and vertebrate rhodopsins

    No full text
    Comparative modeling and ab initio multiconfigurational quantum chemistry are combined to investigate the reactivity of the human nonvisual photoreceptor melanopsin. It is found that both the thermal and photochemical isomerization of the melanopsin 11-cis retinal chromophore occur via a space-saving mechanism involving the unidirectional, counterclockwise twisting of the =C11H-C12H= moiety with respect to its Lys340-linked frame as proposed by Warshel for visual pigments [Warshel A (1976) Nature 260(5553):679–683]. A comparison with the mechanisms documented for vertebrate (bovine) and invertebrate (squid) visual photoreceptors shows that such a mechanism is not affected by the diversity of the three chromophore cavities. Despite such invariance, trajectory computations indicate that although all receptors display less than 100 fs excited state dynamics, human melanopsin decays from the excited state ∼40 fs earlier than bovine rhodopsin. Some diversity is also found in the energy barriers controlling thermal isomerization. Human melanopsin features the highest computed barrier which appears to be ∼2.5 kcal mol(−1) higher than that of bovine rhodopsin. When assuming the validity of both the reaction speed/quantum yield correlation discussed by Warshel, Mathies and coworkers [Weiss RM, Warshel A (1979) J Am Chem Soc 101:6131–6133; Schoenlein RW, Peteanu LA, Mathies RA, Shank CV (1991) Science 254(5030):412–415] and of a relationship between thermal isomerization rate and thermal activation of the photocycle, melanopsin turns out to be a highly sensitive pigment consistent with the low number of melanopsin-containing cells found in the retina and with the extraretina location of melanopsin in nonmammalian vertebrates

    Space and Time Evolution of the Electrostatic Potential during the Activation of a Visual Pigment

    No full text
    Animal and microbial retinal proteins employ the Schiff base of retinal as their chromophore. Here, the possible consequences of the charge translocation associated with the light-induced dynamics of the chromophore of a visual opsin are investigated along a representative semiclassical trajectory. We show that the evolution of the electrostatic potential projected by the chromophore onto the surrounding protein displays intense but topographically localized sudden variations in proximity of the decay region. pKa calculations carried out on selected snapshots used as probes, indicate that the only residue which may be sensitive to the electrostatic potential shift is Glu181. Accordingly, our results suggest that the frail Tyr191/268-Glu181-Wat2-Ser186 hydrogen bond network may be perturbed by the transient variations of the electrostatic potential

    Learning from photobiology how to design molecular devices using a computer

    No full text
    Learning how to model photo-responsive proteins may open the way to the design of lightpowered biomimetic molecular devices.</p

    Molecular bases for the selection of the chromophore of animal rhodopsins

    No full text
    5sireservedmixedLuk, Hoi Ling; Melaccio, Federico; Rinaldi, Silvia; Gozem, Samer; Olivucci, MassimoLuk, Hoi Ling; Melaccio, Federico; Rinaldi, Silvia; Gozem, Samer; Olivucci, Massim

    Origin of Fluorescence in 11-cisLocked Bovine Rhodopsin

    Get PDF
    The excited state lifetime of bovine rhodopsin (Rh) increases from ca. 100 fs to 85 ps when the C11=C12 bond of its chromophore is locked by a cyclopentene moiety (Rh5). To explain such an increase, we employed ab initio multiconfigurational quantum chemistry to construct computer models of Rh and Rh5 and to investigate the shape of their excited state potential energy surfaces in a comparative way. Our results show that the observed Rh5 fluorescence (lambda(f)(max) = 620 nm) is due to a previously unreported locally excited intermediate whose lifetime is controlled by a small energy barrier. The analysis of the properties and decay path of such an intermediate provides useful information for engineering rhodopsin variants with augmented fluorescence efficiencies
    corecore