27 research outputs found

    The World's Tallest Tropical Tree in Three Dimensions

    Get PDF
    We would like to thank NERC for funding the airborne remote sensing campaign (HMTF grant NE/K016377/1 to the BALI consortium, YM, DC and DB) + direct access grant to MC, DSB, GM and DB), analyses (grants NE/P004806/1 to MC, DSB, GF, DB, GH, and NE/I528477/1 to GH, DSB, GF), and ground-based work (grant NE/P012337/1 to YM, MD and LPB); an ERC Advanced Investigator Award (321131) to YM for funding the UAV work; LAStools’ LASmoons program for a free academic license; and an Anne McLaren Research fellowship by the University of Nottingham to GH for funding the tree climbing. YM is supported by the Jackson Foundation. Data availability statement Generated Statement: The datasets generated for this study are available on request to the corresponding author.Peer reviewedPublisher PD

    Detection of hidden structures for arbitrary scales in complex physical systems

    Get PDF
    Recent decades have experienced the discovery of numerous complex materials. At the root of the complexity underlying many of these materials lies a large number of contending atomic- and largerscale configurations. In order to obtain a more detailed understanding of such systems, we need tools that enable the detection of pertinent structures on all spatial and temporal scales. Towards this end, we suggest a new method that applies to both static and dynamic systems which invokes ideas from network analysis and information theory. Our approach efficiently identifies basic unit cells, topological defects, and candidate natural structures. The method is particularly useful where a clear definition of order is lacking, and the identified features may constitute a natural point of departure for further analysis

    Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity

    Full text link
    Tropical rainforest hyperdiversity is often suggested to have evolved over a long time-span (the ‘museum’ model), but there is also evidence for recent rainforest radiations. The mahoganies (Meliaceae) are a prominent plant group in lowland tropical rainforests world-wide but also occur in all other tropical ecosystems. We investigated whether rainforest diversity in Meliaceae has accumulated over a long time or has more recently evolved. We inferred the largest time-calibrated phylogeny for the family to date, reconstructed ancestral states for habitat and deciduousness, estimated diversification rates and modeled potential shifts in macro-evolutionary processes using a recently developed Bayesian method. The ancestral Meliaceae is reconstructed as a deciduous species that inhabited seasonal habitats. Rainforest clades have diversified from the Late Oligocene or Early Miocene onwards. Two contemporaneous Amazonian clades have converged on similar ecologies and high speciation rates. Most species-level diversity of Meliaceae in rainforest is recent. Other studies have found steady accumulation of lineages, but the large majority of plant species diversity in rainforests is recent, suggesting (episodic) species turnover. Rainforest hyperdiversity may best be explained by recent radiations from a large stock of higher level taxa
    corecore