397 research outputs found

    Framework for assessing the quality of quality management programs

    Full text link
    A model for assessing the quality of quality management programs is presented in this paper. The role of Strategic Gaps and Knowledge Gaps in evaluating the quality of quality management programs is discussed in this paper. In addition, the paper presents a method for identification of any possible Strategic Gaps and Knowledge Gaps which may exist in organisational quality management processes. The existence of such gaps may adversely affect the expected outcome from the implemented quality management programs. Furthermore, the paper explores the relationship between the perception of the developers or implementers of quality management programs and other related organizational attributes. Finally, the study seeks to identify other management characteristics associated with success or otherwise of quality management programs in HR departments. In so doing, the importance of addressing issues arising from Strategic Gaps and Knowledge Gaps is addressed

    Analysis of band-gap formation in squashed arm-chair CNT

    Full text link
    The electronic properties of squashed arm-chair carbon nanotubes are modeled using constraint free density functional tight binding molecular dynamics simulations. Independent from CNT diameter, squashing path can be divided into {\it three} regimes. In the first regime, the nanotube deforms with negligible force. In the second one, there is significantly more resistance to squashing with the force being 40100\sim 40-100 nN/per CNT unit cell. In the last regime, the CNT looses its hexagonal structure resulting in force drop-off followed by substantial force enhancement upon squashing. We compute the change in band-gap as a function of squashing and our main results are: (i) A band-gap initially opens due to interaction between atoms at the top and bottom sides of CNT. The π\pi-orbital approximation is successful in modeling the band-gap opening at this stage. (ii) In the second regime of squashing, large πσ\pi-\sigma interaction at the edges becomes important, which can lead to band-gap oscillation. (iii) Contrary to a common perception, nanotubes with broken mirror symmetry can have {\it zero} band-gap. (iv) All armchair nanotubes become metallic in the third regime of squashing. Finally, we discuss both differences and similarities obtained from the tight binding and density functional approaches.Comment: 16 pages and 6 figures, To appear in PR

    Quantum heat transfer through an atomic wire

    Get PDF
    We studied the phononic heat transfer through an atomic dielectric wire with both infinite and finite lengths by using a model Hamiltonian approach. At low temperature under ballistic transport, the thermal conductance contributed by each phonon branch of a uniform and harmonic chain cannot exceed the well-known value which depends linearly on temperature but is material independent. We predict that this ballistic thermal conductance will exhibit stepwise behavior as a function of temperature. By performing numerical calculations on a more realistic system, where a small atomic chain is placed between two reservoirs, we also found resonance modes, which should also lead to the stepwise behavior in the thermal conductance.Comment: 14 pages, 2 separate figure

    Structure and conductance histogram of atomic-sized Au contacts

    Full text link
    Many experiments have shown that the conductance histograms of metallic atomic-sized contacts exhibit a peak structure, which is characteristic of the corresponding material. The origin of these peaks still remains as an open problem. In order to shed some light on this issue, we present a theoretical analysis of the conductance histograms of Au atomic contacts. We have combined classical molecular dynamics simulations of the breaking of nanocontacts with conductance calculations based on a tight-binding model. This combination gives us access to crucial information such as contact geometries, forces, minimum cross-section, total conductance and transmission coefficients of the individual conduction channels. The ensemble of our results suggests that the low temperature Au conductance histograms are a consequence of a subtle interplay between mechanical and electrical properties of these nanocontacts. At variance with other suggestions in the literature, our results indicate that the peaks in the Au conductance histograms are not a simple consequence of conductance quantization or the existence of exceptionally stable radii. We show that the main peak in the histogram close to one quantum of conductance is due to the formation of single-atom contacts and chains of gold atoms. Moreover, we present a detailed comparison with experimental results on Au atomic contacts where the individual channel transmissions have been determined.Comment: 11 pages, 10 figures, version to be published in Phys. Rev. B. The paper has been thoroughly revised and several figures have been replaced by new one

    Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust

    Get PDF
    Le comportement du signal radar TerraSAR-X en fonction des paramètres du sol (rugosité, humidité, structure) a été analysé sur des données 2009 et 2010. Les résultats montrent que la sensibilité du signal radar à l'humidité est plus importante pour des faibles incidences (25° en comparaison à 50°). Pour des fortes valeurs d'humidité, le signal TerraSAR-X est plus sensible à la rugosité du sol à forte incidence (50°). La forte résolution spatiale des données TerraSAR-X (1 m) permet de détecter la croûte de battance à l'échelle intra parcellaire. / Soils play a key role in shaping the environment and in risk assessment. We characterized the soils of bare agricultural plots using TerraSAR-X (9.5 GHz) data acquired in 2009 and 2010. We analyzed the behavior of the TerraSAR-X signal for two configurations, HH-25° and HH-50°, with regard to several soil conditions: moisture content, surface roughness, soil composition and soil-surface structure (slaking crust).The TerraSAR-X signal was more sensitive to soil moisture at a low (25°) incidence angle than at a high incidence angle (50°). For high soil moisture (N25%), the TerraSAR-X signal was more sensitive to soil roughness at a high incidence angle (50°) than at a low incidence angle (25°). The high spatial resolution of the TerraSAR-X data (1 m) enabled the soil composition and slaking crust to be analyzed at the within-plot scale based on the radar signal. The two loamy-soil categories that composed our training plots did not differ sufficiently in their percentages of sand and clay to be discriminated by the X-band radar signal.However, the spatial distribution of slaking crust could be detected when soil moisture variation is observed between soil crusted and soil without crust. Indeed, areas covered by slaking crust could have greater soil moisture and consequently a greater backscattering signal than soils without crust

    Conductance through a single atom

    Get PDF
    In this paper we present an analysis of conduction through a single atom between two metal electrodes. Based on ab initio total-energy and electronic-structure calculations, and molecular-dynamics simulations using the embedded-atom model, we show that the conductance through an atom depends on the electronic structure of both the single atom and the metal electrodes, as well as the binding structure between the single atom and the surfaces of the metal electrodes. Our results enable us to interpret experimental results obtained by using a mechanical break junction on atomic-scale wires

    Quantum point contact on graphite surface

    Get PDF
    The conductance through a quantum point contact created by a sharp and hard metal tip on the graphite surface has features which to our knowledge have not been encountered so far in metal contacts or in nanowires. In this paper we first investigate these features which emerge from the strongly directional bonding and electronic structure of graphite, and provide a theoretical understanding for the electronic conduction through quantum point contacts. Our study involves the molecular-dynamics simulations to reveal the variation of interlayer distances and atomic structure at the proximity of the contact that evolves by the tip pressing toward the surface. The effects of the elastic deformation on the electronic structure, state density at the Fermi level, and crystal potential are analyzed by performing self-consistent-field pseudopotential calculations within the local-density approximation. It is found that the metallicity of graphite increases under the uniaxial compressive strain perpendicular to the basal plane. The quantum point contact is modeled by a constriction with a realistic potential. The conductance is calculated by representing the current transporting states in Laue representation, and the variation of conductance with the evolution of contact is explained by taking the characteristic features of graphite into account. It is shown that the sequential puncturing of the layers characterizes the conductance.Comment: LaTeX, 11 pages, 9 figures (included), to be published in Phys. Rev. B, tentatively scheduled for 15 September 1998 (Volume 58, Number 12

    Structure of aluminum atomic chains

    Get PDF
    First-principles density functional calculations reveal that aluminum can form planar chains in zigzag and ladder structures. The most stable one has equilateral triangular geometry with four nearest neighbors; the other stable zigzag structure has wide bond angle and allows for two nearest neighbors. An intermediary structure has the ladder geometry and is formed by two strands. All these planar geometries are, however, more favored energetically than the linear chain. We found that by going from bulk to a chain the character of bonding changes and acquires directionality. The conductance of zigzag and linear chains is 4e^2/h under ideal ballistic conditions.Comment: modified detailed version, one new structure added, 4 figures, modified figure1, 1 tabl

    Multiple Functionality in Nanotube Transistors

    Full text link
    Calculations of quantum transport in a carbon nanotube transistor show that such a device offers unique functionality. It can operate as a ballistic field-effect transistor, with excellent characteristics even when scaled to 10 nm dimensions. At larger gate voltages, channel inversion leads to resonant tunneling through an electrostatically defined nanoscale quantum dot. Thus the transistor becomes a gated resonant tunelling device, with negative differential resistance at a tunable threshold. For the dimensions considered here, the device operates in the Coulomb blockade regime, even at room temperature.Comment: To appear in Phys. Rev. Let

    Resonant Andreev reflections in superconductor-carbon-nanotube devices

    Get PDF
    Resonant Andreev reflection through superconductor-carbon-nanotube devices was investigated theoretically with a focus on the superconducting proximity effect. Consistent with a recent experiment, we find that for high transparency devices on-resonance, the Andreev current is characterized by a large value and a resistance dip; low-transparency off-resonance devices give the opposite result. We also give evidence that the observed low-temperature transport anomaly may be a natural result of Andreev reflection process
    corecore