44 research outputs found

    Entomological surveillance following a long-lasting insecticidal net universal coverage campaign in Midwestern Uganda.

    Get PDF
    BACKGROUND: A universal coverage campaign (UCC) with long-lasting insecticidal nets (LLINs) was implemented in four districts in Midwestern Uganda in 2009-2010. Entomological surveys were carried out to monitor changes in vector density, behaviour and malaria transmission following this intervention. METHODS: Anopheles mosquitoes were collected using CDC light traps quarterly and human landing catch twice a year in four sites. Collections were done at baseline before the campaign and over a three-year period following the campaign. Plasmodium falciparum circumsporozoite enzyme-linked immunosorbent assays were performed. A subset of anophelines were molecularly identified to species, and kdr L1014S frequencies were determined. RESULTS: The prevailing malaria vector in three sites was Anopheles gambiae s.l. (>97 %), with An. funestus s.l. being present in low numbers only. An. gambiae s.s. dominated (> 95 %) over An. arabiensis within A. gambiae s.l. In the remaining site, all three vector species were observed, although their relative densities varied among seasons and years. Vector densities were low in the year following the UCC but increased over time. Vector infectivity was 3.2 % at baseline and 1.8 % three years post-distribution (p = 0.001). The daily entomological inoculation rate (EIR) in 2012 varied between 0.0-0.98 for the different sites compared to a baseline EIR that was between 0.0-5.8 in 2009. There was no indication of a change in indoor feeding times, and both An. gambiae s.l. and An. funestus s.l. continued to feed primarily after midnight with vectors being active until the early morning. Kdr L1014S frequencies were already high at baseline (53-85 %) but increased significantly in all sites over time. CONCLUSIONS: The entomological surveys indicate that there was a reduction in transmission intensity coinciding with an increase in use of LLINs and other antimalarial interventions in areas of high malaria transmission. There was no change in feeding behaviour, and human-vector contact occurred indoors and primarily after midnight constantly throughout the study. Although the study was not designed to evaluate the effectiveness of the intervention compared to areas with no such intervention, the reduction in transmission occurred in an area with previously stable malaria, which seems to indicate a substantial contribution of the increased LLIN coverage

    Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The work described in this article forms part of a study to suppress a population of the malaria vector <it>Anopheles arabiensis </it>in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described.</p> <p>Methods</p> <p>Mosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory). The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated) laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed.</p> <p>Results</p> <p>Minor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality (< 6%). Experiments in the field cage showed that mating occurred in high frequencies (i.e. an average of 60% insemination of females after one or two nights of mating), and laboratory reared males (i.e. sixty generations) were able to inseminate wild females at rates comparable to wild males. Based on wing length data, there was no size preference of males for mates. Survival of mosquitoes from the cage, based on recapture after mating, was satisfactory and approximately 60% of the insects were recaptured after one night. Only limited information on male competitiveness was obtained due to problems associated with individual egg laying of small numbers of wild females.</p> <p>Conclusion</p> <p>It is concluded that although conditions are challenging, there are no major obstacles associated with the small-scale irradiation and transportation of insects in the current setting. The field cage is suitable for experiments and studies to test the competitiveness of irradiated males can be pursued. The scaling up of procedures to accommodate much larger numbers of insects needed for a release is the next challenge and recommendations to further implementation of this genetic control strategy are presented.</p

    Intrinsic and Synthetic Stable Isotope Marking of Tsetse Flies

    Get PDF
    The sterile insect technique has been successfully used to eliminate tsetse populations in a number of programs. Program monitoring in the field relies on the ability to accurately differentiate released sterile insects from wild insects so that estimates can be made of the ratio of sterile males to wild males. Typically, released flies are marked with a dye, which is not always reliable. The difference in isotopic signatures between wild and factory-reared populations could be a reliable and intrinsic secondary marker to complement existing marking methods. Isotopic signatures are natural differences in stable isotope composition of organisms due to discrimination against the heavier isotopes during some biological processes. As the isotopic signature of an organism is mainly dependent on what it eats; by feeding factory-reared flies isotopically different diets to those of the wild population it is possible to intrinsically mark the flies. To test this approach unlabeled samples of Glossina pallidipes (Austen) (Diptera: Glossinidae) from a mass rearing facility and wild populations were analyzed to determine whether there were any natural differences in signatures that could be used as markers. In addition experiments were conducted in which the blood diet was supplemented with isotopically enriched compounds and the persistence of the marker in the offspring determined. There were distinct natural isotopic differences between factory reared and wild tsetse populations that could be reliably used as population markers. It was also possible to rear artificially isotopically labeled flies using simple technology and these flies were clearly distinguishable from wild populations with greater than 95% certainty after 85 days of “release”. These techniques could be readily adopted for use in SIT programs as complimentary marking techniques

    Laboratory selection for an accelerated mosquito sexual development rate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Separating males and females at the early adult stage did not ensure the virginity of females of <it>Anopheles arabiensis </it>(Dongola laboratory strain), whereas two years earlier this method had been successful. In most mosquito species, newly emerged males and females are not able to mate successfully. For anopheline species, a period of 24 h post-emergence is generally required for the completion of sexual maturation, which in males includes a 180° rotation of the genitalia. In this study, the possibility of an unusually shortened sexual maturity period in the laboratory-reared colony was investigated.</p> <p>Methods</p> <p>The effect of two different sex-separation methods on the virginity of females was tested: females separated as pupae or less than 16 h post-emergence were mated with males subjected to various doses of radiation. T-tests were performed to compare the two sex-separation methods. The rate of genitalia rotation was compared for laboratory-reared and wild males collected as pupae in Dongola, Sudan, and analysed by Z-tests. Spermatheca dissections were performed on females mated with laboratory-reared males to determine their insemination status.</p> <p>Results</p> <p>When the sex-separation was performed when adults were less than 16 h post-emergence, expected sterility was never reached for females mated with radio-sterilized males. Expected sterility was accomplished only when sexes were separated at the pupal stage. Observation of genitalia rotation showed that some males from the laboratory strain Dongola were able to successfully mate only 11 h after emergence and 42% of the males had already completed rotation. A small proportion of the same age females were inseminated. Wild males showed a much slower genitalia rotation rate. At 17 h post-emergence, 96% of the laboratory-reared males had completed genitalia rotation whereas none of the wild males had.</p> <p>Conclusion</p> <p>This colony has been cultured in the laboratory for over one hundred generations, and now has accelerated sexual maturation when compared with the wild strain. This outcome demonstrates the kinds of selection that can be expected during insect colonization and maintenance, particularly when generations are non-overlapping and similar-age males must compete for mates.</p

    Mating competitiveness of sterile genetic sexing strain males (GAMA) under laboratory and semi-field conditions: Steps towards the use of the Sterile Insect Technique to control the major malaria vector Anopheles arabiensis in South Africa

    Get PDF
    BACKGROUND : Anopheles arabiensis Patton is primarily responsible for malaria transmission in South Africa after successful suppression of other major vector species using indoor spraying of residual insecticides. Control of An. arabiensis using current insecticide based approaches is proving difficult owing to the development of insecticide resistance, and variable feeding and resting behaviours. The use of the sterile insect technique as an area-wide integrated pest management system to supplement the control of An. arabiensis was proposed for South Africa and is currently under investigation. The success of this technique is dependent on the ability of laboratory-reared sterile males to compete with wild males for mates. As part of the research and development of the SIT technique for use against An. arabiensis in South Africa, radio-sensitivity and mating competitiveness of a local An. arabiensis sexing strain were assessed. METHODS : The optimal irradiation dose inducing male sterility without compromising mating vigour was tested using Cobalt 60 irradiation doses ranging from 70-100 Gy. Relative mating competitiveness of sterile laboratory-reared males (GAMA strain) compared to fertile wild-type males (AMAL strain) for virgin wild-type females (AMAL) was investigated under laboratory and semi-field conditions using large outdoor cages. Three different sterile male to fertile male to wild-type female ratios were evaluated [1:1:1, 5:1:1 and 10:1:1 (sterile males: fertile, wild-type males: fertile, wild-type females)]. RESULTS : Irradiation at the doses tested did not affect adult emergence but had a moderate effect on adult survivorship and mating vigour. A dose of 75 Gy was selected for the competitiveness assays. Mating competitiveness experiments showed that irradiated GAMA male mosquitoes are a third as competitive as their fertile AMAL counterparts under semi-field conditions. However, they were not as competitive under laboratory conditions. An inundative ratio of 10:1 induced the highest sterility in the representative wild-type population, with potential to effectively suppress reproduction. CONCLUSION : Laboratory-reared and sterilised GAMA male An. arabiensis at a release ratio of 3:1 (3 sterile males to 1 wild, fertile male) can successfully compete for insemination of wild-type females. These results will be used to inform subsequent small-scale pilot field releases in South Africa.The Nuclear Technologies in Medicine and the Bioscience Initiatives (NTeMBI), a national platform developed and managed by the South African Nuclear Energy Corporation and supported by the Department of Science and Technology. Funding was also provided in part from the National Research Foundation, the International Atomic Energy Agency (Contracts 17904, SAF5013 and SAF16780/ under the G34002) and a Global Diseases Detection/CDC grant (U19GH000622-01 MAL01).http://www.parasitesandvectors.comam2016Paraclinical Science

    Correction to: Monitoring changes in malaria epidemiology and effectiveness of interventions in Ethiopia and Uganda: Beyond Garki Project baseline survey

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordThe article to which this is the correction is available in ORE at http://hdl.handle.net/10871/19983Correction to: Malar J (2015) 14:337 https://doi.org/10.1186/s12936-015-0852-7 Please be advised that one of the author names is incorrectly spelled in the published article: ‘Irene Kyomuhagi’ should be ‘Irene Kyomuhangi’. The corrected name can be found in the author list of this article

    Application of the lumped age-class technique to studying the dynamics of malaria-mosquito-human interactions

    Get PDF
    A series of models of malaria-mosquito-human interactions using the Lumped Age-Class technique of Gurney & Nisbet are developed. The models explicitly include sub-adult mosquito dynamics and assume that population regulation occurs at the larval stage. A challenge for modelling mosquito dynamics in continuous time is that the insect has discrete life-history stages (egg, larva, pupa & adult), the sub-adult stages of relatively fixed duration, which are subject to very different demographic rates. The Lumped Age-Class technique provides a natural way to treat this type of population structure. The resulting model, phrased as a system of delay-differential equations, is only slightly harder to analyse than traditional ordinary differential equations and much easier than the alternative partial differential equation approach. The Lumped Age-Class technique also allows the natural treatment of the relatively fixed time delay between the mosquito ingesting Plasmodium and it becoming infective. Three models are developed to illustrate the application of this approach: one including just the mosquito dynamics, the second including Plasmodium but no human dynamics, and the third including the interaction of the malaria pathogen and the human population (though only in a simple classical Ross-Macdonald manner). A range of epidemiological quantities used in studying malaria such as the vectorial capacity, the entomological inoculation rate and the basic reproductive number (R0) are derived, and examples given of the analysis and simulation of model dynamics. Assumptions and extensions are discussed. It is suggested that this modelling framework may be a natural and useful tool for exploring a variety of issues in malaria-vector epidemiology, especially in circumstances where a dynamic representation of mosquito recruitment is required
    corecore