18 research outputs found

    Mechanical, pH and Thermal Stability of Mesoporous Hydroxyapatite

    Get PDF
    The stability of mesoporous hydroxyapatite (HAP) powder was studied following treatments of ultrasound, pH and heating. HAP was found to be mechanically stable up to (and including) 1 h continuous ultrasonic treatment in water. The HAP structure was also stable to pH, evidenced by practically identical XRD and FTIR spectra over the pH range 2–12. The surface area increased progressively with increasing acidity, reaching a maximum of 121.9 m 2 g −1 at pH 2, while alkaline conditions decreased the surface area to a minimum of 55.4 m 2 g −1 at pH 12. Heating in air had a significant influence on the structural and morphological properties of HAP, which underwent dehydroxylation to form oxyhydroxyapatite (OHAP) at temperatures ≥ 650 °C, and β-tricalcium phosphate (β-TCP) ≥750 °C. The surface area decreased at elevated temperatures due to agglomeration of HAP crystals by sintering, which was associated with an increased particle size

    Can Ultrasound or pH Influence Pd Distribution on the Surface of HAP to Improve Its Catalytic Properties in the Dry Reforming of Methane?

    Get PDF
    The influence of ultrasound and different pH pre-treatments during the metal doping/modification of a hydroxyapatite (HAP) support is investigated. HAP is first synthesised via a hard-template synthetic route using carbon nanorods followed by their full physiochemical characterisation. The HAP was found to be crystalline and comprised a mesoporous structure as observed via XRD and nitrogen adsorption with a BET surface area of 97.57 (±1.16) m2 g−1. Ultrasound-assisted ion exchange (IE) and incipient wetness impregnation (IW) methodologies were employed to decorate the surface of HAP with Pd0 and are compared to previous procedures. The influence of pH upon the distribution of Pd0 throughout the samples during the doping process is also studied. All the prepared samples were evaluated for their catalytic activity towards dry reforming of methane (DRM) and the reaction was monitored via a thermal conductivity detector, coupled with gas chromatography (GC-TCD). It was found that ultrasound-assisted IE significantly accelerated the process from 3 days to 3 h and with the Pd0 metal remaining highly distributed upon the HAP with minor changes in catalytic conversions. Moreover, the ultrasound-assisted IW method successfully improved the Pd0 distribution and catalytic performance. On the other hand, the dispersion of the metal was unaffected after pH treatments in IE with no catalytic improvements observed, in contrast to IW, where considerable increase in metal distribution and subsequently catalytic performance was observed

    Effect of Magnesium and Osteoblast Cell Presence on Hydroxyapatite Formation on (Ti,Mg)N Thin Film Coatings

    No full text
    TiN and (Ti,Mg)N thin film coatings were deposited on Ti substrates by an arc-physical vapor deposition technique. The effect of cell presence on hydroxyapatite (HA) formation was investigated using surfaces with four different Mg contents (0, 8.1, 11.31, and 28.49 at.%). Accelerated corrosion above 10 at.% Mg had a negative effect on the performance in terms of both cell proliferation and mineralization. In the absence of cells, Mg-free TiN coatings and low-Mg (8.1 at.%)-doped (Ti,Mg)N surfaces led to an early HA deposition (after 7 days and 14 days, respectively) in cell culture medium (DMEM), but the crystallinity was low. More crystalline HA structures were obtained in the presence of the cells. HA deposits with an ideal Ca/P ratio were obtained at least a week earlier, at day 14, in TiN and low-Mg (8.1 at.%)-doped (Ti,Mg)N compared with that of high-Mg-containing surfaces (> 10 at.%). A thicker mineralized matrix was formed on low-Mg (8.1 at.%)-doped (Ti,Mg)N relative to that of the TiN sample. Low-Mg doping (< 10 at.%) into TiN coatings resulted in better cell proliferation and thicker mineralized matrix formation, so it could be a promising alternative for hard tissue applications
    corecore