31 research outputs found

    Neutralising antibodies for West Nile virus in horses from Brazilian Pantanal

    Get PDF
    Despite evidence of West Nile virus (WNV) activity in Colombia, Venezuela and Argentina, this virus has not been reported in most South American countries. In February 2009, we commenced an investigation for WNV in mosquitoes, horses and caimans from the Pantanal, Central-West Brazil. The sera of 168 horses and 30 caimans were initially tested using a flaviviruses-specific epitope-blocking enzyme-linked immunosorbent assay (blocking ELISA) for the detection of flavivirus-reactive antibodies. The seropositive samples were further tested using a plaque-reduction neutralisation test (PRNT90) for WNV and its most closely-related flaviviruses that circulate in Brazil to confirm the detection of specific virus-neutralising antibodies. Of the 93 (55.4%) blocking ELISA-seropositive horse serum samples, five (3%) were seropositive for WNV, nine (5.4%) were seropositive for St. Louis encephalitis virus, 18 (10.7%) were seropositive for Ilheus virus, three (1.8%) were seropositive for Cacipacore virus and none were seropositive for Rocio virus using PRNT90, with a criteria of > four-fold antibody titre difference. All caimans were negative for flaviviruses-specific antibodies using the blocking ELISA. No virus genome was detected from caiman blood or mosquito samples. The present study is the first report of confirmed serological evidence of WNV activity in Brazil

    Regulation of inflammation in Japanese encephalitis

    Get PDF
    Uncontrolled inflammatory response of the central nervous system is a hallmark of severe Japanese encephalitis (JE). Although inflammation is necessary to mount an efficient immune response against virus infections, exacerbated inflammatory response is often detrimental. In this context, cells of the monocytic lineage appear to be important forces driving JE pathogenesis

    Experimental evaluation of infection, dissemination, and transmission rates for two West Nile virus strains in European Aedes japonicus under a fluctuating temperature regime

    Get PDF
    West Nile virus (WNV) is continuously spreading in Eastern and Southern Europe. However, the extent of vector competence of Aedes japonicus (Theobald, 1901) is controversial. In this work, we elucidated the dynamics of virus growth in this invasive mosquito species. Females of Ae. japonicus were reared from eggs collected in the field in Switzerland and fed on bovine blood spiked with two WNV lineage 1 strains (FIN, Italy; NY99, USA). Fully engorged females were incubated for 14 days under a fluctuating temperature regime of 24 ± 7 °C (average 24 °C), 45–90% relative humidity, which is realistic for a Central European mid-summer day. Infection, dissemination, and transmission rates were assessed from individual mosquitoes by analyzing the abdomen, legs and wings, and saliva for the presence of viral RNA. Saliva was also investigated for the presence of infectious virus particles. Overall, 302 females were exposed to WNV strain FIN and 293 to strain NY99. A higher infection rate was observed for NY99 (57.4%) compared to FIN (30.4%) (p = 0.003). There was no statistical evidence that the dissemination rate (viral RNA in legs and wings) was different between females infected with FIN (57.1%) compared to NY99 (35.5%) (p = 0.16). Viral RNA load of FIN compared to NY99 was significantly higher in the hemocoel (p = 0.031) of exposed females but not at other sites (legs and wings, saliva). This is the first study describing the vector competence parameters for two WNV strains in a European population of Ae. japonicus. The high dissemination and transmission rates for WNV under a realistic temperature regime in Ae. japonicus together with recent findings on its opportunistic feeding behavior (mammals and birds) indicate its potential role in WNV transmission in Central Europe where it is highly abundant

    Yersinia pestis Caf1 Protein: Effect of Sequence Polymorphism on Intrinsic Disorder Propensity, Serological Cross-Reactivity and Cross-Protectivity of Isoforms

    No full text
    Yersinia pestis Caf1 is a multifunctional protein responsible for antiphagocytic activity and is a key protective antigen. It is generally conserved between globally distributed Y. pestis strains, but Y. pestis subsp. microtus biovar caucasica strains circulating within populations of common voles in Georgia and Armenia were reported to carry a single substitution of alanine to serine. We investigated polymorphism of the Caf1 sequences among other Y. pestis subsp. microtus strains, which have a limited virulence in guinea pigs and in humans. Sequencing of caf1 genes from 119 Y. pestis strains belonging to different biovars within subsp. microtus showed that the Caf1 proteins exist in three isoforms, the global type Caf1NT1 (Ala48 Phe117), type Caf1NT2 (Ser48 Phe117) found in Transcaucasian-highland and Pre-Araks natural plague foci #4-7, and a novel Caf1NT3 type (Ala48 Val117) endemic in Dagestan-highland natural plague focus #39. Both minor types are the progenies of the global isoform. In this report, Caf1 polymorphism was analyzed by comparing predicted intrinsic disorder propensities and potential protein-protein interactivities of the three Caf1 isoforms. The analysis revealed that these properties of Caf1 protein are minimally affected by its polymorphism. All protein isoforms could be equally detected by an immunochromatography test for plague at the lowest protein concentration tested (1.0 ng/mL), which is the detection limit. When compared to the classic Caf1NT1 isoform, the endemic Caf1NT2 or Caf1NT3 had lower immunoreactivity in ELISA and lower indices of self- and cross-protection. Despite a visible reduction in cross-protection between all Caf1 isoforms, our data suggest that polymorphism in the caf1 gene may not allow the carriers of Caf1NT2 or Caf1NT3 variants escaping from the Caf1NT1-mediated immunity to plague in the case of a low-dose flea-borne infection
    corecore