21 research outputs found

    High versus low dose Stereotactic Body Radiation Therapy for hepatic metastases

    Get PDF
    Introduction: Stereotactic Body Radiation Therapy (SBRT) is a treatment option for patients with liver metastases. This study evaluated the impact of high versus low dose image-guided SBRT of hepatic metastases.Methods and materials: This is a single-center retrospective study of patients with liver metastases treated with SBRT. For analyses, patients were divided into two groups: 100 Gy and >100 Gy near-minimum Biological Effective Doses (BED98%). The main outcomes were local control (LC), toxicity and overall survival (OS). Cox regression analyses were performed to determine prognostic variables on LC and OSResults: Ninety patients with 97 liver metastases (77% colorectal) were included. Median follow-up was 28.6 months. The two-year LC rates in the 100 Gy and >100 Gy BED98% group were 60% (CI: 41–80%) and 90% (CI: 80–100%), respectively (p = 0.004). Grade 3 toxicity occurred in 7% vs 2% in the 100 Gy and >100 Gy group (p = 0.23). Two-year OS rates in the 100 Gy and >100 Gy group were 48% (CI: 32–65%) and 85% (CI: 73–97%), respectively (p = 0.007). In multivariable Cox regression analyses, group dose and tumor volume were significantly correlated with LC (HR: 3.61; p = 0.017 and HR: 1.01; p = 0.005) and OS (HR: 2.38; p = 0.005 and HR: 1.01; p = <0.0001).Conclusion: High dose SBRT provides significantly better local control and overall survival than low dose SBRT without increasing toxicity. When surgical resection is not feasible, high dose SBRT provides an effective and safe treatment for liver metastases

    MAL2 and tumor protein D52 (TPD52) are frequently overexpressed in ovarian carcinoma, but differentially associated with histological subtype and patient outcome

    Get PDF
    Background: The four-transmembrane MAL2 protein is frequently overexpressed in breast carcinoma, and MAL2 overexpression is associated with gain of the corresponding locus at chromosome 8q24.12. Independent expression microarray studies predict MAL2 overexpression in ovarian carcinoma, but these had remained unconfirmed. MAL2 binds tumor protein D52 (TPD52), which is frequently overexpressed in ovarian carcinoma, but the clinical significance of MAL2 and TPD52 overexpression was unknown. Methods: Immunohistochemical analyses of MAL2 and TPD52 expression were performed using tissue microarray sections including benign, borderline and malignant epithelial ovarian tumours. Inmmunohistochemical staining intensity and distribution was assessed both visually and digitally. Results: MAL2 and TPD52 were significantly overexpressed in high-grade serous carcinomas compared with serous borderline tumours. MAL2 expression was highest in serous carcinomas relative to other histological subtypes, whereas TPD52 expression was highest in clear cell carcinomas. MAL2 expression was not related to patient survival, however high-level TPD52 staining was significantly associated with improved overall survival in patients with stage III serous ovarian carcinoma (log-rank test, p < 0.001; n = 124) and was an independent predictor of survival in the overall carcinoma cohort (hazard ratio (HR), 0.498; 95% confidence interval (CI), 0.34-0.728; p < 0.001; n = 221), and in serous carcinomas (HR, 0.440; 95% CI, 0.294-0.658; p < 0.001; n = 182). Conclusions: MAL2 is frequently overexpressed in ovarian carcinoma, and TPD52 overexpression is a favourable independent prognostic marker of potential value in the management of ovarian carcinoma patients.11 page(s

    High-resolution analysis of copy number alterations and associated expression changes in ovarian tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA copy number alterations are frequently observed in ovarian cancer, but it remains a challenge to identify the most relevant alterations and the specific causal genes in those regions.</p> <p>Methods</p> <p>We obtained high-resolution 500K SNP array data for 52 ovarian tumors and identified the most statistically significant minimal genomic regions with the most prevalent and highest-level copy number alterations (recurrent CNAs). Within a region of recurrent CNA, comparison of expression levels in tumors with a given CNA to tumors lacking that CNA and to whole normal ovary samples was used to select genes with CNA-specific expression patterns. A public expression array data set of laser capture micro-dissected (LCM) non-malignant fallopian tube epithelia and LCM ovarian serous adenocarcinoma was used to evaluate the effect of cell-type mixture biases.</p> <p>Results</p> <p>Fourteen recurrent deletions were detected on chromosomes 4, 6, 9, 12, 13, 15, 16, 17, 18, 22 and most prevalently on X and 8. Copy number and expression data suggest several apoptosis mediators as candidate drivers of the 8p deletions. Sixteen recurrent gains were identified on chromosomes 1, 2, 3, 5, 8, 10, 12, 15, 17, 19, and 20, with the most prevalent gains localized to 8q and 3q. Within the 8q amplicon, <it>PVT1</it>, but not <it>MYC</it>, was strongly over-expressed relative to tumors lacking this CNA and showed over-expression relative to normal ovary. Likewise, the cell polarity regulators <it>PRKCI </it>and <it>ECT2 </it>were identified as putative drivers of two distinct amplicons on 3q. Co-occurrence analyses suggested potential synergistic or antagonistic relationships between recurrent CNAs. Genes within regions of recurrent CNA showed an enrichment of Cancer Census genes, particularly when filtered for CNA-specific expression.</p> <p>Conclusion</p> <p>These analyses provide detailed views of ovarian cancer genomic changes and highlight the benefits of using multiple reference sample types for the evaluation of CNA-specific expression changes.</p

    Genome Wide DNA Copy Number Analysis of Serous Type Ovarian Carcinomas Identifies Genetic Markers Predictive of Clinical Outcome

    Get PDF
    Ovarian cancer is the fifth leading cause of cancer death in women. Ovarian cancers display a high degree of complex genetic alterations involving many oncogenes and tumor suppressor genes. Analysis of the association between genetic alterations and clinical endpoints such as survival will lead to improved patient management via genetic stratification of patients into clinically relevant subgroups. In this study, we aim to define subgroups of high-grade serous ovarian carcinomas that differ with respect to prognosis and overall survival. Genome-wide DNA copy number alterations (CNAs) were measured in 72 clinically annotated, high-grade serous tumors using high-resolution oligonucleotide arrays. Two clinically annotated, independent cohorts were used for validation. Unsupervised hierarchical clustering of copy number data derived from the 72 patient cohort resulted in two clusters with significant difference in progression free survival (PFS) and a marginal difference in overall survival (OS). GISTIC analysis of the two clusters identified altered regions unique to each cluster. Supervised clustering of two independent large cohorts of high-grade serous tumors using the classification scheme derived from the two initial clusters validated our results and identified 8 genomic regions that are distinctly different among the subgroups. These 8 regions map to 8p21.3, 8p23.2, 12p12.1, 17p11.2, 17p12, 19q12, 20q11.21 and 20q13.12; and harbor potential oncogenes and tumor suppressor genes that are likely to be involved in the pathogenesis of ovarian carcinoma. We have identified a set of genetic alterations that could be used for stratification of high-grade serous tumors into clinically relevant treatment subgroups

    Daily Intravoxel Incoherent Motion (IVIM) In Prostate Cancer Patients During MR-Guided Radiotherapy-A Multicenter Study.

    Get PDF
    PURPOSE: Daily quantitative MR imaging during radiotherapy of cancer patients has become feasible with MRI systems integrated with linear accelerators (MR-linacs). Quantitative images could be used for treatment response monitoring. With intravoxel incoherent motion (IVIM) MRI, it is possible to acquire perfusion information without the use of contrast agents. In this multicenter study, daily IVIM measurements were performed in prostate cancer patients to identify changes that potentially reflect response to treatment. MATERIALS AND METHODS: Forty-three patients were included, treated with 20 fractions of 3 Gy on a 1.5 T MR-linac. IVIM measurements were performed on each treatment day. The diffusion coefficient (D), perfusion fraction (f), and pseudo-diffusion coefficient (D*) were calculated based on the median signal intensities in the non-cancerous prostate and the tumor. Repeatability coefficients (RCs) were determined based on the first two treatment fractions. Separate linear mixed-effects models were constructed for the three IVIM parameters. RESULTS: In total, 726 fractions were analyzed. Pre-treatment average values, measured on the first fraction before irradiation, were 1.46 Γ— 10-3 mm2/s, 0.086, and 28.7 Γ— 10-3 mm2/s in the non-cancerous prostate and 1.19 Γ— 10-3 mm2/s, 0.088, and 28.9 Γ— 10-3 mm2/s in the tumor, for D, f, and D*, respectively. The repeatability coefficients for D, f, and D* in the non-cancerous prostate were 0.09 Γ— 10-3 mm2/s, 0.05, and 15.3 Γ— 10-3 mm2/s. In the tumor, these values were 0.44 Γ— 10-3 mm2/s, 0.16, and 76.4 Γ— 10-3 mm2/s. The mixed effects analysis showed an increase in D of the tumors over the course of treatment, while remaining stable in the non-cancerous prostate. The f and D* increased in both the non-cancerous prostate and tumor. CONCLUSIONS: It is feasible to perform daily IVIM measurements on an MR-linac system.Β Although the repeatability coefficients were high, changes in IVIM perfusion parameters were measured on a group level, indicating that IVIM has potential for measuring treatment response

    Development and results of a patient-reported treatment experience questionnaire on a 1.5Β T MR-Linac.

    No full text
    IntroductionWith the implementation of new radiotherapy technology, it is imperative that patient experience is investigated alongside efficacy and outcomes. This paper presents the development of a specifically designed validated questionnaire and a first report of international multi-institutional preliminary patient experience of MRI-guided adaptive radiotherapy (MRgART) on the 1.5Β T MR-Linac (MRL).MethodsA patient experience questionnaire was developed and validated before being distributed to the Elekta MRL Consortium, to gather first patient-reported experience from participating centres worldwide. The final version of the questionnaire contains 18 questions covering a range of themes and was scored on a Likert scale of 0-3. Responses were post-processed so that a score of 0 represents a negative response and 3 represents the most favourable response. These results were analysed for patient-reported experience of treatment on the MRL. Results were also analysed for internal consistency of the questionnaire using Chronbach's Alpha and the questionnaire contents were validated for relevance using content validity indexes (CVI).Results170 responses were received from five centres, representing patients with a wide range of tumour treatment sites from four different countries. MRgART was well tolerated with an 84% favourable response across all questions and respondents. When analysed by theme, all reported the highest percentage of results in the favourable categories (2 and 3). Internal consistency in the questionnaire was high (Cronbach's Ξ±Β =Β 0.8) and the item-level CVI for each question was 0.78 or above and the Scale-level CVI was 0.93, representing relevant content.ConclusionThe developed questionnaire has been validated as relevant and appropriate for use in reporting experience of patients undergoing treatment on the MRL. The overall patient-reported experience and satisfaction from multiple centres within the Elekta MRL Consortium was consistently high. These results can reinforce user confidence in continuing to expand and develop MRL use in adaptive radiotherapy

    The MOMENTUM Study: An International Registry for the Evidence-Based Introduction of MR-Guided Adaptive Therapy.

    No full text
    Purpose: MR-guided Radiation Therapy (MRgRT) allows for high-precision radiotherapy under real-time MR visualization. This enables margin reduction and subsequent dose escalation which may lead to higher tumor control and less toxicity. The Unity MR-linac (Elekta AB, Stockholm, Sweden) integrates a linear accelerator with a 1.5T diagnostic quality MRI and an online adaptive workflow. A prospective international registry was established to facilitate the evidence-based implementation of the Unity MR-linac into clinical practice, to systemically evaluate long-term outcomes, and to aid further technical development of MR-linac-based MRgRT. Methods and Results: In February 2019, the Multi-OutcoMe EvaluatioN of radiation Therapy Using the MR-linac study (MOMENTUM) started within the MR-linac Consortium. The MOMENTUM study is an international academic-industrial partnership between several hospitals and industry partner Elekta. All patients treated on the MR-linac are eligible for inclusion in MOMENTUM. For participants, we collect clinical patient data (e.g., patient, tumor, and treatment characteristics) and technical patient data which is defined as information generated on the MR-linac during treatment. The data are captured, pseudonymized, and stored in an international registry at set time intervals up to two years after treatment. Patients can choose to provide patient-reported outcomes and consent to additional MRI scans acquired on the MR-linac. This registry will serve as a data platform that supports multicenter research investigating the MR-linac. Rules and regulations on data sharing, data access, and intellectual property rights are summarized in an academic-industrial collaboration agreement. Data access rules ensure secure data handling and research integrity for investigators and institutions. Separate data access rules exist for academic and industry partners. This study is registered at ClinicalTrials.gov with ID: NCT04075305 (https://clinicaltrials.gov/ct2/show/NCT04075305). Conclusion: The multi-institutional MOMENTUM study has been set up to collect clinical and technical patient data to advance technical development, and facilitate evidenced-based implementation of MR-linac technology with the ultimate purpose to improve tumor control, survival, and quality of life of patients with cancer

    Patterns of Care, Tolerability, and Safety of the First Cohort of Patients Treated on a Novel High-Field MR-Linac Within the MOMENTUM Study: Initial Results From a Prospective Multi-Institutional Registry.

    Full text link
    PURPOSE: High-field magnetic resonance-linear accelerators (MR-Linacs), linear accelerators combined with a diagnostic magnetic resonance imaging (MRI) scanner and online adaptive workflow, potentially give rise to novel online anatomic and response adaptive radiation therapy paradigms. The first high-field (1.5T) MR-Linac received regulatory approval in late 2018, and little is known about clinical use, patient tolerability of daily high-field MRI, and toxicity of treatments. Herein we report the initial experience within the MOMENTUM Study (NCT04075305), a prospective international registry of the MR-Linac Consortium. METHODS AND MATERIALS: Patients were included between February 2019 and October 2020 at 7 institutions in 4 countries. We used descriptive statistics to describe the patterns of care, tolerability (the percentage of patients discontinuing their course early), and safety (grade 3-5 Common Terminology Criteria for Adverse Events v.5 acute toxicity within 3 months after the end of treatment). RESULTS: A total 943 patients participated in the MOMENTUM Study, 702 of whom had complete baseline data at the time of this analysis. Patients were primarily male (79%) with a median age of 68 years (range, 22-93) and were treated for 39 different indications. The most frequent indications were prostate (40%), oligometastatic lymph node (17%), brain (12%), and rectal (10%) cancers. The median number of fractions was 5 (range, 1-35). Six patients discontinued MR-Linac treatments, but none due to an inability to tolerate repeated high-field MRI. Of the 415 patients with complete data on acute toxicity at 3-month follow-up, 18 (4%) patients experienced grade 3 acute toxicity related to radiation. No grade 4 or 5 acute toxicity related to radiation was observed. CONCLUSIONS: In the first 21 months of our study, patterns of care were diverse with respect to clinical utilization, body sites, and radiation prescriptions. No patient discontinued treatment due to inability to tolerate daily high-field MRI scans, and the acute radiation toxicity experience was encouraging
    corecore