1,162 research outputs found

    Glutathione is key to the synergistic enhancement of doxorubicin and etoposide by polyphenols in leukaemia cell lines

    Get PDF
    Recently published in Nature: Cell Death and Discovery, Mahbub et al.1 have demonstrated that polyphenols can synergistically enhance the action of the topoisomerase II inhibitors: doxorubicin and etoposide in leukaemia cells. A reduction of glutathione (GSH) was strongly associated with sensitising cells to the pro-apoptotic effects of polyphenols when used in combination with doxorubicin or etoposide. Importantly, when polyphenols and topoisomerase II inhibitors were combined, it was possible to induce a synergistic decrease in cell proliferation (measured as ATP levels), cell-cycle arrest and induction of apoptosis in leukaemia cell lines

    Ultra-Sensitive Hot-Electron Nanobolometers for Terahertz Astrophysics

    Full text link
    The background-limited spectral imaging of the early Universe requires spaceborne terahertz (THz) detectors with the sensitivity 2-3 orders of magnitude better than that of the state-of-the-art bolometers. To realize this sensitivity without sacrificing operating speed, novel detector designs should combine an ultrasmall heat capacity of a sensor with its unique thermal isolation. Quantum effects in thermal transport at nanoscale put strong limitations on the further improvement of traditional membrane-supported bolometers. Here we demonstrate an innovative approach by developing superconducting hot-electron nanobolometers in which the electrons are cooled only due to a weak electron-phonon interaction. At T<0.1K, the electron-phonon thermal conductance in these nanodevices becomes less than one percent of the quantum of thermal conductance. The hot-electron nanobolometers, sufficiently sensitive for registering single THz photons, are very promising for submillimeter astronomy and other applications based on quantum calorimetry and photon counting.Comment: 19 pages, 3 color figure

    Intellispread®: Precision aerial topdressing

    Get PDF
    Aerial topdressing – the aerial application of fertilisers over farmland using specialist agricultural aircraft – is an integral part of New Zealand’s agricultural heritage. The procedure was born and developed there, so it makes sense that New Zealand researchers are behind much of its development. Dr Miles Grafton and Matthew Irwin from Massey University on North Island, believe that increasing the efficacy of aerial topdressing is possible by reducing the role of a currently crucial part of the procedure: the pilot.London, U.K

    FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells

    Get PDF
    Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Randomised controlled trial of a home-based physical activity intervention in breast cancer survivors

    Get PDF
    Background: To improve adherence to physical activity (PA), behavioural support in the form of behavioural change counselling may be necessary. However, limited evidence of the effectiveness of home-based PA combined with counselling in breast cancer patients exists. The aim of this current randomised controlled trial with a parallel group design was to evaluate the effectiveness of a home-based PA intervention on PA levels, anthropometric measures, health-related quality of life (HRQoL), and blood biomarkers in breast cancer survivors. Methods: Eighty post-adjuvant therapy invasive breast cancer patients (age = 53.6 ± 9.4 years; height = 161.2 ± 6.8 cm; mass = 68.7 ± 10.5 kg) were randomly allocated to a 6-month home-based PA intervention or usual care. The intervention group received face-to-face and telephone PA counselling aimed at encouraging the achievement of current recommended PA guidelines. All patients were evaluated for our primary outcome, PA (International PA Questionnaire) and secondary outcomes, mass, BMI, body fat %, HRQoL (Functional assessment of Cancer Therapy-Breast), insulin resistance, triglycerides (TG) and total (TC), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) cholesterol were assessed at baseline and at 6-months. Results: On the basis of linear mixed-model analyses adjusted for baseline values performed on 40 patients in each group, total, leisure and vigorous PA significantly increased from baseline to post-intervention in the intervention compared to usual care (between-group differences, 578.5 MET-min∙wk−1, p = .024, 382.2 MET-min∙wk−1, p = .010, and 264.1 MET-min∙wk−1, p = .007, respectively). Both body mass and BMI decreased significantly in the intervention compared to usual care (between-group differences, −1.6 kg, p = .040, and −.6 kg/m2, p = .020, respectively). Of the HRQoL variables, FACT-Breast, Trial Outcome Index, functional wellbeing, and breast cancer subscale improved significantly in the PA group compared to the usual care group (between-group differences, 5.1, p= .024; 5.6, p = .001; 1.9 p = .025; and 2.8, p=.007, respectively). Finally, TC and LDL-C was significantly reduced in the PA group compared to the usual care group (between-group differences, −.38 mmol∙L−1, p=.001; and −.3 mmol∙L−1, p=.023, respectively). Conclusions: We found that home-based PA resulted in significant albeit small to moderate improvements in selfreported PA, mass, BMI, breast cancer specific HRQoL, and TC and LDL-C compared with usual care

    Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment

    Get PDF
    During T cell development, multipotent progenitors relinquish competence for other fates and commit to the T cell lineage by turning on Bcl11b, which encodes a transcription factor. To clarify lineage commitment mechanisms, we followed developing T cells at the single-cell level using Bcl11b knock-in fluorescent reporter mice. Notch signaling and Notch-activated transcription factors collaborate to activate Bcl11b expression irrespectively of Notch-dependent proliferation. These inputs work via three distinct, asynchronous mechanisms: an early locus 'poising' function dependent on TCF-1 and GATA-3, a stochastic-permissivity function dependent on Notch signaling, and a separate amplitude-control function dependent on Runx1, a factor already present in multipotent progenitors. Despite their necessity for Bcl11b expression, these inputs act in a stage-specific manner, providing a multitiered mechanism for developmental gene regulation

    Improved Glycaemia correlates with liver fat reduction in obese, type 2 diabetes, patients given glucagon-like peptide-1 (GLP-1) receptor agonists

    Get PDF
    Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are effective for obese patients with type 2 diabetes mellitus (T2DM) because they concomitantly target obesity and dysglycaemia. Considering the high prevalence of non-alcoholic fatty liver disease (NAFLD) in patients with T2DM, we determined the impact of 6 months' GLP-1 RA therapy on intrahepatic lipid (IHL) in obese, T2DM patients with hepatic steatosis, and evaluated the inter-relationship between changes in IHL with those in glycosylated haemoglobin (HbA(1)c), body weight, and volume of abdominal visceral and subcutaneous adipose tissue (VAT and SAT). We prospectively studied 25 (12 male) patients, age 50±10 years, BMI 38.4±5.6 kg/m(2) (mean ± SD) with baseline IHL of 28.2% (16.5 to 43.1%) and HbA(1)c of 9.6% (7.9 to 10.7%) (median and interquartile range). Patients treated with metformin and sulphonylureas/DPP-IV inhibitors were given 6 months GLP-1 RA (exenatide, n = 19; liraglutide, n = 6). IHL was quantified by liver proton magnetic resonance spectroscopy ((1)H MRS) and VAT and SAT by whole body magnetic resonance imaging (MRI). Treatment was associated with mean weight loss of 5.0 kg (95% CI 3.5,6.5 kg), mean HbA(1c) reduction of 1·6% (17 mmol/mol) (0·8,2·4%) and a 42% relative reduction in IHL (-59.3, -16.5%). The relative reduction in IHL correlated with that in HbA(1)c (ρ = 0.49; p = 0.01) but was not significantly correlated with that in total body weight, VAT or SAT. The greatest IHL reduction occurred in individuals with highest pre-treatment levels. Mechanistic studies are needed to determine potential direct effects of GLP-1 RA on human liver lipid metabolism
    corecore