8 research outputs found

    The Airway Microbiota in Cystic Fibrosis: A Complex Fungal and Bacterial Community—Implications for Therapeutic Management

    Get PDF
    International audienceBackground Given the polymicrobial nature of pulmonary infections in patients with cystic fibrosis (CF), it is essential to enhance our knowledge on the composition of the microbial community to improve patient management. In this study, we developed a pyrosequencing approach to extensively explore the diversity and dynamics of fungal and prokaryotic populations in CF lower airways. Methodology and Principal Findings Fungi and bacteria diversity in eight sputum samples collected from four adult CF patients was investigated using conventional microbiological culturing and high-throughput pyrosequencing approach targeting the ITS2 locus and the 16S rDNA gene. The unveiled microbial community structure was compared to the clinical profile of the CF patients. Pyrosequencing confirmed recently reported bacterial diversity and observed complex fungal communities, in which more than 60% of the species or genera were not detected by cultures. Strikingly, the diversity and species richness of fungal and bacterial communities was significantly lower in patients with decreased lung function and poor clinical status. Values of Chao1 richness estimator were statistically correlated with values of the Shwachman-Kulczycki score, body mass index, forced vital capacity, and forced expiratory volume in 1 s (p = 0.046, 0.047, 0.004, and 0.001, respectively for fungal Chao1 indices, and p = 0.010, 0.047, 0.002, and 0.0003, respectively for bacterial Chao1 values). Phylogenetic analysis showed high molecular diversities at the sub-species level for the main fungal and bacterial taxa identified in the present study. Anaerobes were isolated with Pseudomonas aeruginosa, which was more likely to be observed in association with Candida albicans than with Aspergillus fumigatus

    Gene Expression Profiling of Histiocytic Sarcomas in a Canine Model: The Predisposed Flatcoated Retriever Dog

    Get PDF
    Background: The determination of altered expression of genes in specific tumor types and their effect upon cellular processes may create insight in tumorigenesis and help to design better treatments. The Flatcoated retriever is a dog breed with an exceptionally high incidence of histiocytic sarcomas. The breed develops two distinct entities of histiocytic neoplasia, a soft tissue form and a visceral form. Gene expression studies of these tumors have value for comparable human diseases such as histiocytic/dendritic cell sarcoma for which knowledge is difficult to accrue due to their rare occurrence. In addition, such studies may help in the search for genetic aberrations underlying the genetic predisposition in this dog breed. Methods: Microarray analysis and pathway analyses were performed on fresh-frozen tissues obtained from Flatcoated retrievers with localized, soft tissue histiocytic sarcomas (STHS) and disseminated, visceral histiocytic sarcomas (VHS) and on normal canine spleens from various breeds. Expression differences of nine genes were validated with quantitative real-time PCR (qPCR) analyses. Results: QPCR analyses identified the significantly altered expression of nine genes; PPBP, SpiC, VCAM1, ENPEP, ITGAD (down-regulated), and GTSF1, Col3a1, CD90 and LUM (up-regulated) in the comparison of both the soft tissue and the visceral form with healthy spleen. DAVID pathway analyses revealed 24 pathways that were significantly involved in the development of HS in general, most of which were involved in the DNA repair and replication process. Conclusions: This study identified altered expression of nine genes not yet implicated in histiocytic sarcoma manifestations in the dog nor in comparable human histiocytic/dendritic sarcomas. Exploration of the downside effect of canine inbreeding strategies for the study of similar sarcomas in humans might also lead to the identification of genes related to these rare malignancies in the human

    Group B streptococcus (GBS) is an important pathogen in human disease- but what about in cystic fibrosis?

    No full text
    Abstract Background Group B Streptococcus (GBS) is a common commensal capable of causing severe invasive infections. Most GBS infections occur in neonates (often as pneumonia). GBS can also cause infection in adults with diabetes and other immunological impairments but rarely leads to pneumonia in adults. GBS has occasionally been found in the sputum of Cystic Fibrosis (CF) patients, an inherited condition known for progressive lung disease. However, the epidemiology and clinical significance of GBS in CF are not understood. Methods We retrospectively reviewed a large single-centre adult CF population with an associated comprehensive, prospectively collected bacterial biobank beginning in 1978. We identified all individuals with GBS isolated from their sputum on at least one occasion. The primary outcome was risk of pulmonary exacerbation (PEx) at the time of the first GBS isolate compared to the preceding visit. Secondary outcomes included determining: prevalence of GBS infection in a CF population, whether GBS infections where transient or persistent, whether GBS strains were shared among patients, change in % predicted FEV1 at the time of GBS isolate compared to the preceding visit, PEx frequency after the first GBS isolate, change in % predicted FEV1 after the first GBS isolate, and complications of GBS infection. Results GBS was uncommon, infecting 3.5% (11/318) adults within our cohort. Only three individuals developed persistent GBS infection, all lasting > 12 months. There were no shared GBS strains among patients. PEx risk was not increased at initial GBS isolation (RR 5.0, CI 0.69–36.1, p=0.10). In the two years preceding initial GBS isolation compared to the two following years, there was no difference in PEx frequency (median 2, range 0–4 vs 1, range 0 to 5, respectively, p=0.42) or lung function decline, as measured by % predicted FEV1, (median −1.0%, range −19 to 7% vs median −6.0%, range −18 to 22%, p=0.86). There were no invasive GBS infections. Conclusion In adults with CF, GBS is uncommon and is generally a transient colonizer of the lower airways. Despite the presence of structural lung disease and impaired innate immunity in CF, incident GBS infection did not increase PEx risk, PEx frequency, rate of lung function decline, or other adverse clinical outcomes
    corecore