21 research outputs found

    Cytological diagnostic features of late breast implant seromas. From reactive to anaplastic large cell lymphoma

    Get PDF
    Late breast implant seroma may be the presentation of a breast implant-associated anaplastic large cell lymphoma (BI-ALCL), which claims for a prompt recognition. However, BI-ALCL diagnosis on fine-needle aspiration (FNA) might be challenging for pathologists lacking experience with peri-implant breast effusions. Sixty-seven late breast implant seromas collected by FNA from 50 patients were evaluated by Papanicolaou smear stain and immunocytochemistry on cell blocks. A diagnostic algorithm based on the cellular composition, cell morphology and percentage of CD30+ cells was developed. Histological evaluation of the corresponding peri-prosthetic capsules was also performed. Most of the effusions (91% of the samples) were classified as reactive and 9% as BI-ALCL. In the BI-ALCL cases, medium-to-large atypical cells expressing CD30 represented more than 70% of the cellularity, whereas in in the reactive effusions CD30+ elements were extremely rare (<5%) and consisted of non-atypical elements. The reactive effusions were categorized into three patterns: i) acute infiltrate with prominent neutrophilic component (33% of the samples); ii) mixed infiltrate characterized by a variable number of neutrophils, lymphocytes and macrophages (30% of the samples); iii) chronic infiltrate composed predominantly of T lymphocytes or macrophages with only sporadic granulocytes (37% of the samples). The inflammatory cytological patterns were consistent with the histology of the corresponding capsules. Our results indicate that cytological analysis of late breast implant effusions, supported by the knowledge of the heterogeneous cytomorphological spectrum of late seromas, is a valuable approach for the early recognition of BI-ALCL

    Spatial and temporal variation in the elemental and stable isotopic content of the seagrasses Posidonia oceanica and Cymodocea nodosa from the Illes Balears, Spain

    No full text
    Morphology, elemental content and isotopic composition of leaves of the seagrasses Posidonia oceanica and Cymodocea nodosa were highly variable across the Illes Balears, a Spanish archipelago in the western Mediterranean, and varied seasonally at one site in the study area. The data presented in this paper generally expand the reported ranges of nitrogen, phosphorus, iron and arsenic content and δ13C and δ15N for these species. Nitrogen and phosphorus content of P. oceanica leaves also showed significant seasonal variability; on an annual basis, P. oceanica leaves averaged 1.55% N and 0.14% P at this monitoring site. Both N and P were more concentrated in the leaves in winter than in summer, with winter maxima of 1.76% N and 0.17% P and summer minima of 1.34% N and 0.11% P. There was no significant annual pattern observed in the δ13C of P. oceanica leaves, but there was a repeated 0.6‰ seasonal fluctuation in δ15N. Mean annual δ15N was 4.0‰; δ15N was lowest in May and it increased through the summer and autumn to a maximum in November. Over the geographic range of our study area, there were interspecific differences in the carbon, nitrogen and phosphorus content of the two species. Posidonia oceanica N:P ratios were distributed around the critical value of 30:1 while the ratios for C. nodosa were lower than this value, suggesting P. oceanica we collected was not consistently limited by N or P while C. nodosa tended toward nitrogen limitation. Nutrient content was significantly correlated to morphological indicators of plant vigor. Fe content of P. oceanica leaves varied by a factor of 5×, with a minimum of 31.1 μg g−1 and a maximum of 167.7 μg g−1. Arsenic was present in much lower tissue concentrations than Fe, but the As concentrations were more variable; the maximum concentration of 1.60 μg g−1 was eight times as high as the minimum of 0.20 μg g−1. There were interspecific differences in δ13C of the two species; C. nodosa was consistently more enriched (δ13C = −7.8 ± 1.7‰) than P. oceanica (−13.2 ± 1.2‰). The δ13C of both species decreased significantly with increasing water depth. Depth related and regional variability in the δ13C and δ15N of both species were marked, suggesting that caution needs to be exercised when applying stable isotopes in food web analyses
    corecore