13 research outputs found

    Proteome-wide analysis and diel proteomic profiling in the cyanobacterium Arthrospira platensis PCC 8005

    Get PDF
    The filamentous cyanobacteriumArthrospira platensishas a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing onArthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle inA. platensis. This preliminary proteomic study has highlighted new characteristics of theArthrospira platensisproteome in terms of diurnal regulation

    The proteomic response in glioblastoma in young patients

    Get PDF
    Increasing age is an important prognostic variable in glioblastoma (GBM). We have defined the proteomic response in GBM samples from 7 young patients (mean age 36 years) compared to peritumoural-control samples from 10 young patients (mean age 32 years). 2-Dimensional-gel-electrophoresis, image analysis, and protein identification (LC/MS) were performed. 68 proteins were significantly altered in young GBM samples with 29 proteins upregulated and 39 proteins downregulated. Over 50 proteins are described as altered in GBM for the first time. In a parallel analysis in old GBM (mean age 67 years), an excellent correlation could be demonstrated between the proteomic profile in young GBM and that in old GBM patients (r(2) = 0.95) with only 5 proteins altered significantly (p < 0.01). The proteomic response in young GBM patients highlighted alterations in protein–protein interactions in the immunoproteosome, NFkB signalling, and mitochondrial function and the same systems participated in the responses in old GBM patients. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11060-014-1474-6) contains supplementary material, which is available to authorized users
    corecore