194 research outputs found

    Predictive validity of the CriSTAL tool for short-term mortality in older people presenting at Emergency Departments: a prospective study

    Get PDF
    © 2018, The Author(s). Abstract: To determine the validity of the Australian clinical prediction tool Criteria for Screening and Triaging to Appropriate aLternative care (CRISTAL) based on objective clinical criteria to accurately identify risk of death within 3 months of admission among older patients. Methods: Prospective study of ≥ 65 year-olds presenting at emergency departments in five Australian (Aus) and four Danish (DK) hospitals. Logistic regression analysis was used to model factors for death prediction; Sensitivity, specificity, area under the ROC curve and calibration with bootstrapping techniques were used to describe predictive accuracy. Results: 2493 patients, with median age 78–80 years (DK–Aus). The deceased had significantly higher mean CriSTAL with Australian mean of 8.1 (95% CI 7.7–8.6 vs. 5.8 95% CI 5.6–5.9) and Danish mean 7.1 (95% CI 6.6–7.5 vs. 5.5 95% CI 5.4–5.6). The model with Fried Frailty score was optimal for the Australian cohort but prediction with the Clinical Frailty Scale (CFS) was also good (AUROC 0.825 and 0.81, respectively). Values for the Danish cohort were AUROC 0.764 with Fried and 0.794 using CFS. The most significant independent predictors of short-term death in both cohorts were advanced malignancy, frailty, male gender and advanced age. CriSTAL’s accuracy was only modest for in-hospital death prediction in either setting. Conclusions: The modified CriSTAL tool (with CFS instead of Fried’s frailty instrument) has good discriminant power to improve prognostic certainty of short-term mortality for ED physicians in both health systems. This shows promise in enhancing clinician’s confidence in initiating earlier end-of-life discussions

    Controls on gut phosphatisation : the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah)

    Get PDF
    Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods--typically the most diverse fossilised organisms in Cambrian ecosystems--where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace

    Characterization of the past and current duplication activities in the human 22q11.2 region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Segmental duplications (SDs) on 22q11.2 (LCR22), serve as substrates for meiotic non-allelic homologous recombination (NAHR) events resulting in several clinically significant genomic disorders.</p> <p>Results</p> <p>To understand the duplication activity leading to the complicated SD structure of this region, we have applied the A-Bruijn graph algorithm to decompose the 22q11.2 SDs to 523 fundamental duplication sequences, termed subunits. Cross-species syntenic analysis of primate genomes demonstrates that many of these LCR22 subunits emerged very recently, especially those implicated in human genomic disorders. Some subunits have expanded more actively than others, and young <it>Alu </it>SINEs, are associated much more frequently with duplicated sequences that have undergone active expansion, confirming their role in mediating recombination events. Many copy number variations (CNVs) exist on 22q11.2, some flanked by SDs. Interestingly, two chromosome breakpoints for 13 CNVs (mean length 65 kb) are located in paralogous subunits, providing direct evidence that SD subunits could contribute to CNV formation. Sequence analysis of PACs or BACs identified extra CNVs, specifically, 10 insertions and 18 deletions within 22q11.2; four were more than 10 kb in size and most contained young <it>AluY</it>s at their breakpoints.</p> <p>Conclusions</p> <p>Our study indicates that <it>AluY</it>s are implicated in the past and current duplication events, and moreover suggests that DNA rearrangements in 22q11.2 genomic disorders perhaps do not occur randomly but involve both actively expanded duplication subunits and <it>Alu </it>elements.</p

    Tumor necrosis factor-α-mediated threonine 435 phosphorylation of p65 nuclear factor-κB subunit in endothelial cells induces vasogenic edema and neutrophil infiltration in the rat piriform cortex following status epilepticus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Status epilepticus (SE) induces severe vasogenic edema in the piriform cortex (PC) accompanied by neuronal and astroglial damages. To elucidate the mechanism of SE-induced vasogenic edema, we investigated the roles of tumor necrosis factor (TNF)-α in blood-brain barrier (BBB) disruption during vasogenic edema and its related events in rat epilepsy models provoked by pilocarpine-induced SE.</p> <p>Methods</p> <p>SE was induced by pilocarpine in rats that were intracerebroventricularly infused with saline-, and soluble TNF p55 receptor (sTNFp55R) prior to SE induction. Thereafter, we performed Fluoro-Jade B staining and immunohistochemical studies for TNF-α and NF-κB subunits.</p> <p>Results</p> <p>Following SE, most activated microglia showed strong TNF-α immunoreactivity. In addition, TNF p75 receptor expression was detected in endothelial cells as well as astrocytes. In addition, only p65-Thr435 phosphorylation was increased in endothelial cells accompanied by SMI-71 expression (an endothelial barrier antigen). Neutralization of TNF-α by soluble TNF p55 receptor (sTNFp55R) infusion attenuated SE-induced vasogenic edema and neuronal damages via inhibition of p65-Thr435 phosphorylation in endothelial cells. Furthermore, sTNFp55R infusion reduced SE-induced neutrophil infiltration in the PC.</p> <p>Conclusion</p> <p>These findings suggest that impairments of endothelial cell functions via TNF-α-mediated p65-Thr 485 NF-κB phosphorylation may be involved in SE-induced vasogenic edema. Subsequently, vasogenic edema results in extensive neutrophil infiltration and neuronal-astroglial loss.</p

    Moray eels are more common on coral reefs subject to higher human pressure in the greater Caribbean

    Get PDF
    Proximity and size of the nearest market (market gravity) have been shown to have strong negative effects on coral reef fish communities that can be mitigated by the establishment of closed areas. However, moray eels are functionally unique predators that are generally not subject to targeted fishing and should therefore not directly be affected by these factors. We used baited remote underwater video systems to investigate associations between morays and anthropogenic, habitat, and ecological factors in the Caribbean region. Market gravity had a positive effect on morays, while the opposite pattern was observed in a predator group subject to exploitation (sharks). Environmental DNA analyses corroborated the positive effect of market gravity on morays. We hypothesize that the observed pattern could be the indirect result of the depletion of moray competitors and predators near humans

    The Dynamics of EBV Shedding Implicate a Central Role for Epithelial Cells in Amplifying Viral Output

    Get PDF
    To develop more detailed models of EBV persistence we have studied the dynamics of virus shedding in healthy carriers. We demonstrate that EBV shedding into saliva is continuous and rapid such that the virus level is replaced in ≤2 minutes, the average time that a normal individual swallows. Thus, the mouth is not a reservoir of virus but a conduit through which a continuous flow stream of virus passes in saliva. Consequently, virus is being shed at a much higher rate than previously thought, a level too high to be accounted for by replication in B cells in Waldeyer's ring alone. Virus shedding is relatively stable over short periods (hours-days) but varies through 3.5 to 5.5 logs over longer periods, a degree of variation that also cannot be accounted for solely by replication in B cells. This variation means, contrary to what is generally believed, that the definition of high and low shedder is not so much a function of variation between individuals but within individuals over time. The dynamics of shedding describe a process governing virus production that is occurring independently ≤3 times at any moment. This process grows exponentially and is then randomly terminated. We propose that these dynamics are best explained by a model where single B cells sporadically release virus that infects anywhere from 1 to 5 epithelial cells. This infection spreads at a constant exponential rate and is terminated randomly, resulting in infected plaques of epithelial cells ranging in size from 1 to 105 cells. At any one time there are a very small number (≤3) of plaques. We suggest that the final size of these plaques is a function of the rate of infectious spread within the lymphoepithelium which may be governed by the structural complexity of the tissue but is ultimately limited by the immune response

    Patient-centred measurement in ophthalmology – a paradigm shift

    Get PDF
    Ophthalmologists and researchers in ophthalmology understand what a rapidly evolving field ophthalmology is, and that to conduct good research it is essential to use the latest and best methods. In outcomes research, one modern initiative has been to conduct holistic measurement of outcomes inclusive of the patient's point of view; patient-centred outcome. This, of course, means including a questionnaire. However, the irony of trying to improve outcomes research by being inclusive of many measures is that the researcher may not be expert in all measures used. Certainly, few people conducting outcomes research in ophthalmology would claim to be questionnaire experts. Most tend to be experts in their ophthalmic subspecialty and probably simply choose a popular questionnaire that appears to fit their needs and think little more about it. Perhaps, unlike our own field, we assume that the field of questionnaire research is relatively stable. This is far from the case. The measurement of patient-centred outcomes with questionnaires is a rapidly evolving field. Indeed, over the last few years a paradigm shift has occurred in patient-centred measurement

    Mitochondrial Alterations in PINK1 Deficient Cells Are Influenced by Calcineurin-Dependent Dephosphorylation of Dynamin-Related Protein 1

    Get PDF
    PTEN-induced novel kinase 1 (PINK1) mutations are associated with autosomal recessive parkinsonism. Previous studies have shown that PINK1 influences both mitochondrial function and morphology although it is not clearly established which of these are primary events and which are secondary. Here, we describe a novel mechanism linking mitochondrial dysfunction and alterations in mitochondrial morphology related to PINK1. Cell lines were generated by stably transducing human dopaminergic M17 cells with lentiviral constructs that increased or knocked down PINK1. As in previous studies, PINK1 deficient cells have lower mitochondrial membrane potential and are more sensitive to the toxic effects of mitochondrial complex I inhibitors. We also show that wild-type PINK1, but not recessive mutant or kinase dead versions, protects against rotenone-induced mitochondrial fragmentation whereas PINK1 deficient cells show lower mitochondrial connectivity. Expression of dynamin-related protein 1 (Drp1) exaggerates PINK1 deficiency phenotypes and Drp1 RNAi rescues them. We also show that Drp1 is dephosphorylated in PINK1 deficient cells due to activation of the calcium-dependent phosphatase calcineurin. Accordingly, the calcineurin inhibitor FK506 blocks both Drp1 dephosphorylation and loss of mitochondrial integrity in PINK1 deficient cells but does not fully rescue mitochondrial membrane potential. We propose that alterations in mitochondrial connectivity in this system are secondary to functional effects on mitochondrial membrane potential

    Chimerism in Wild Adult Populations of the Broadcast Spawning Coral Acropora millepora on the Great Barrier Reef

    Get PDF
    Chimeras are organisms containing tissues or cells of two or more genetically distinct individuals, and are known to exist in at least nine phyla of protists, plants, and animals. Although widespread and common in marine invertebrates, the extent of chimerism in wild populations of reef corals is unknown.The extent of chimerism was explored within two populations of a common coral, Acropora millepora, on the Great Barrier Reef, Australia, by using up to 12 polymorphic DNA microsatellite loci. At least 2% and 5% of Magnetic Island and Pelorus Island populations of A. millepora, respectively, were found to be chimeras (3% overall), based on conservative estimates. A slightly less conservative estimate indicated that 5% of colonies in each population were chimeras. These values are likely to be vast underestimates of the true extent of chimerism, as our sampling protocol was restricted to a maximum of eight branches per colony, while most colonies consist of hundreds of branches. Genotypes within chimeric corals showed high relatedness, indicating that genetic similarity is a prerequisite for long-term acceptance of non-self genotypes within coral colonies.While some brooding corals have been shown to form genetic chimeras in their early life history stages under experimental conditions, this study provides the first genetic evidence of the occurrence of coral chimeras in the wild and of chimerism in a broadcast spawning species. We hypothesize that chimerism is more widespread in corals than previously thought, and suggest that this has important implications for their resilience, potentially enhancing their capacity to compete for space and respond to stressors such as pathogen infection

    Low Dynamics, High Longevity and Persistence of Sessile Structural Species Dwelling on Mediterranean Coralligenous Outcrops

    Get PDF
    There is still limited understanding of the processes underlying benthic species dynamics in marine coastal habitats, which are of disproportionate importance in terms of productivity and biodiversity. The life-history traits of long-lived benthic species in these habitats are particularly poorly documented. In this study, we assessed decadal patterns of population dynamics for ten sponge and anthozoan species that play key structural roles in coralligenous outcrops (∼25 m depth) in two areas of the NW Mediterranean Sea. This study was based on examination of a unique long-term photographic series, which allowed analysis of population dynamics over extensive spatial and time spans for the very first time. Specifically, 671 individuals were censused annually over periods of 25-, 15-, and 5-years. This long-term study quantitatively revealed a common life-history pattern among the ten studied species, despite the fact they present different growth forms. Low mortality rates (3.4% yr−1 for all species combined) and infrequent recruitment events (mean value of 3.1±0.5 SE recruits yr−1) provided only a very small fraction of the new colonies required to maintain population sizes. Overall, annual mortality and recruitment rates did not differ significantly among years; however, some species displayed important mortality events and recruitment pulses, indicating variability among species. Based on the growth rates of these 10 species, we projected their longevity and, obtained a mean estimated age of 25–200 years. Finally, the low to moderate turnover rates (mean value 0.80% yr−1) observed among the coralligenous species were in agreement with their low dynamics and persistence. These results offer solid baseline data and reveal that these habitats are among the most vulnerable to the current increases of anthropogenic disturbances
    corecore