26 research outputs found

    Circadian oscillator proteins across the kingdoms of life : Structural aspects 06 Biological Sciences 0601 Biochemistry and Cell Biology

    Get PDF
    Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms and control numerous biological processes in a range of organisms. These periodic rhythms are the result of a complex interplay of interactions among clock components. These components are specific to the organism but share molecular mechanisms that are similar across kingdoms. The elucidation of clock mechanisms in different kingdoms has recently started to attain the level of structural interpretation. A full understanding of these molecular processes requires detailed knowledge, not only of the biochemical and biophysical properties of clock proteins and their interactions, but also the three-dimensional structure of clockwork components. Posttranslational modifications (such as phosphorylation) and protein-protein interactions, have become a central focus of recent research, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. The three-dimensional structures for the cyanobacterial clock components are well understood, and progress is underway to comprehend the mechanistic details. However, structural recognition of the eukaryotic clock has just begun. This review serves as a primer as the clock communities move towards the exciting realm of structural biology

    NUCLEAR FACTOR Y, Subunit C (NF-YC) Transcription Factors Are Positive Regulators of Photomorphogenesis in Arabidopsis thaliana

    Get PDF
    We thank Dr. Ben Smith (University of Oklahoma) for assistance with FLIM-FRET measurements and Dr. Min Ni (University of Minnesota) for critical reading of the manuscript. The cop1-4 mutant allele and cop1-4 co-9 cross were kindly provided by George Coupland (Max Planck Institute).Author Summary Light perception is critically important for the fitness of plants in both natural and agricultural settings. Plants not only use light for photosynthesis, but also as a cue for proper development. As a seedling emerges from soil it must determine the light environment and adopt an appropriate growth habit. When blue and red wavelengths are the dominant sources of light, plants will undergo photomorphogenesis. Photomorphogenesis describes a number of developmental responses initiated by light in a seedling, and includes shortened stems and establishing the ability to photosynthesize. The genes regulating photomorphogenesis have been studied extensively, but a complete picture remains elusive. Here we describe the finding that NUCLEAR FACTOR-Y (NF-Y) genes are positive regulators of photomorphogenesis—i.e., in plants where NF-Y genes are mutated, they display some characteristics of dark grown plants, even though they are in the light. Our data suggests that the roles of NF-Y genes in light perception do not fit in easily with those of other described pathways. Thus, studying these genes promises to help develop a more complete picture of how light drives plant development.Yeshttp://www.plosgenetics.org/static/editorial#pee

    Joint Angle and Frequency Estimation Using Multiple-Delay Output Based on ESPRIT

    No full text
    This paper presents a novel ESPRIT algorithm-based joint angle and frequency estimation using multiple-delay output (MDJAFE). The algorithm can estimate the joint angles and frequencies, since the use of multiple output makes the estimation accuracy greatly improved when compared with a conventional algorithm. The useful behavior of the proposed algorithm is verified by simulations.</p
    corecore