384 research outputs found

    Evaluation of Polymorphic Locus Sequence Typing for Candida glabrata Epidemiology.

    Get PDF
    The opportunistic yeastCandida glabratais increasingly refractory to antifungal treatment or prophylaxis and relatedly is increasingly implicated in health care-associated infections. To elucidate the epidemiology of these infections, strain typing is required. Sequence-based typing provides multiple advantages over length-based methods, such as pulsed-field gel electrophoresis (PFGE); however, conventional multilocus sequence typing (targeting 6 conserved loci) and whole-genome sequencing are impractical for routine use. A commercial sequence-based typing service forC. glabratathat targets polymorphic tandem repeat-containing loci has recently been developed. These CgMT-J and CgMT-M services were evaluated with 56 epidemiologically unrelated isolates, 4 to 7 fluconazole-susceptible or fluconazole-resistant isolates from each of 5 center A patients, 5 matched pairs of fluconazole-susceptible/resistant isolates from center B patients, and 7 isolates from a center C patient who responded to then failed caspofungin therapy. CgMT-J and CgMT-M generated congruent results, resolving isolates into 24 and 20 alleles, respectively. Isolates from all but one of the center A patients shared the same otherwise rare alleles, suggesting nosocomial transmission. Unexpectedly, Pdr1 sequencing showed that resistance arose independently in each patient. Similarly, most isolates from center B also clustered together; however, this may reflect a dominant clone since their alleles were shared by multiple unrelated isolates. Although distinguishable by their echinocandin susceptibilities, all isolates from the center C patient shared alleles, in agreement with the previously reported relatedness of these isolates based on PFGE. Finally, we show how phylogenetic clusters can be used to provide surrogate parents to analyze the mutational basis for antifungal resistance

    Optical map guided genome assembly

    Get PDF
    Background The long reads produced by third generation sequencing technologies have significantly boosted the results of genome assembly but still, genome-wide assemblies solely based on read data cannot be produced. Thus, for example, optical mapping data has been used to further improve genome assemblies but it has mostly been applied in a post-processing stage after contig assembly. Results We proposeOpticalKermitwhich directly integrates genome wide optical maps into contig assembly. We show how genome wide optical maps can be used to localize reads on the genome and then we adapt the Kermit method, which originally incorporated genetic linkage maps to the miniasm assembler, to use this information in contig assembly. Our experimental results show that incorporating genome wide optical maps to the contig assembly of miniasm increases NGA50 while the number of misassemblies decreases or stays the same. Furthermore, when compared to the Canu assembler,OpticalKermitproduces an assembly with almost three times higher NGA50 with a lower number of misassemblies on realA. thalianareads. Conclusions OpticalKermitsuccessfully incorporates optical mapping data directly to contig assembly of eukaryotic genomes. Our results show that this is a promising approach to improve the contiguity of genome assemblies.Peer reviewe

    Twist1 Directly Regulates Genes That Promote Cell Proliferation and Migration in Developing Heart Valves

    Get PDF
    Twist1, a basic helix-loop-helix transcription factor, is expressed in mesenchymal precursor populations during embryogenesis and in metastatic cancer cells. In the developing heart, Twist1 is highly expressed in endocardial cushion (ECC) valve mesenchymal cells and is down regulated during valve differentiation and remodeling. Previous studies demonstrated that Twist1 promotes cell proliferation, migration, and expression of primitive extracellular matrix (ECM) molecules in ECC mesenchymal cells. Furthermore, Twist1 expression is induced in human pediatric and adult diseased heart valves. However, the Twist1 downstream target genes that mediate increased cell proliferation and migration during early heart valve development remain largely unknown. Candidate gene and global gene profiling approaches were used to identify transcriptional targets of Twist1 during heart valve development. Candidate target genes were analyzed for evolutionarily conserved regions (ECRs) containing E-box consensus sequences that are potential Twist1 binding sites. ECRs containing conserved E-box sequences were identified for Twist1 responsive genes Tbx20, Cdh11, Sema3C, Rab39b, and Gadd45a. Twist1 binding to these sequences in vivo was determined by chromatin immunoprecipitation (ChIP) assays, and binding was detected in ECCs but not late stage remodeling valves. In addition identified Twist1 target genes are highly expressed in ECCs and have reduced expression during heart valve remodeling in vivo, which is consistent with the expression pattern of Twist1. Together these analyses identify multiple new genes involved in cell proliferation and migration that are differentially expressed in the developing heart valves, are responsive to Twist1 transcriptional function, and contain Twist1-responsive regulatory sequences

    The Effect of Oxidant and the Non-Oxidant Alteration of Cellular Thiol Concentration on the Formation of Protein Mixed-Disulfides in HEK 293 Cells

    Get PDF
    Cellular molecules possess various mechanisms in responding to oxidant stress. In terms of protein responses, protein S-glutathionylation is a unique post-translational modification of protein reactive cysteines forming disulfides with glutathione molecules. This modification has been proposed to play roles in antioxidant, regulatory and signaling in cells under oxidant stress. Recently, the increased level of protein S-glutathionylation has been linked with the development of diseases. In this report, specific S-glutathionylated proteins were demonstrated in human embryonic kidney 293 cells treated with two different oxidative reagents: diamide and hydrogen peroxide. Diamide is a chemical oxidizing agent whereas hydrogen peroxide is a physiological oxidant. Under the experimental conditions, these two oxidants decreased glutathione concentration without toxicity. S-glutathionylated proteins were detected by immunoblotting and glutathione concentrations were determined by high performance liquid chromatography. We further show the effect of alteration of the cellular thiol pool on the amount of protein S-glutathionylation in oxidant-treated cells. Cellular thiol concentrations were altered either by a specific way using buthionine sulfoximine, a specific inhibitor of glutathione biosynthesis or by a non-specific way, incubating cells in cystine-methionine deficient media. Cells only treated with either buthionine sulfoximine or cystine-methionine deficient media did not induce protein S-glutathionylation, even though both conditions decreased 65% of cellular glutathione. Moreover, the amount of protein S-glutathionylation under both conditions in the presence of oxidants was not altered when compared to the amount observed in regular media with oxidants present. Protein S-glutathionylation is a dynamic reaction which depends on the rate of adding and removing glutathione. Phenylarsine oxide, which specifically forms a covalent adduct with vicinal thiols, was used to determine the possible role of vicinal thiols in the amount of glutathionylation. Our data shows phenylarsine oxide did not change glutathione concentrations, but it did enhance the amount of glutathionylation in oxidant-treated cells

    The effectiveness of Stepping stones Triple P: the design of a randomised controlled trial on a parenting programme regarding children with mild intellectual disability and psychosocial problems versus care as usual

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Children with an intellectual disability are at increased risk of psychosocial problems. This leads to serious restrictions in the daily functioning of the children and to parental stress. Stepping Stones Triple P aims to prevent severe behavioural, emotional and developmental problems in children with a (intellectual) disability by enhancing parenting knowledge and skills, and the self-confidence of parents. This paper aims to describe the design of a study of the effectiveness of parenting counselling using Stepping Stones Triple P compared to Care as Usual.</p> <p>Methods/Design</p> <p>The effects of Stepping Stones Triple P will be studied in a Randomised Controlled Trial. Parents of children aged 5-12 years with an IQ of 50-85 will be recruited from schools. Prior to randomisation, parents complete a screening questionnaire about their child's psychosocial problems and their parenting skills. Subsequently, parents of children with increased levels of psychosocial problems (score on Strengths and Difficulties Questionnaire ≥ 14) will be invited to participate in the intervention study. After obtaining consent, parents will be randomised either to the experimental group (Stepping Stones Triple P) or to Care as Usual. The primary outcome is a change in the child's psychosocial problems according to parents and teachers. The secondary outcome is a change in parenting skills. Data will be collected before the start of the intervention, immediately after the intervention, and six months after.</p> <p>Discussion</p> <p>This paper presents an outline of the background and design of a randomised controlled trial to investigate the effectiveness of Stepping Stones Triple P, which aims to decrease psychosocial problems in children with a mild intellectual disability. Stepping Stones Triple P seems promising, but evidence on its effectiveness for this population is still lacking. This study provides evidence about the effects of this intervention in a community-based population of children with a mild intellectual disability.</p> <p>Trial registration</p> <p>Netherlands Trial Register (NTR): <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=NTR2624">NTR2624</a></p
    corecore