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Abstract

Background: The long reads produced by third generation sequencing technologies
have significantly boosted the results of genome assembly but still, genome-wide
assemblies solely based on read data cannot be produced. Thus, for example, optical
mapping data has been used to further improve genome assemblies but it has mostly
been applied in a post-processing stage after contig assembly.

Results: We propose OPTICALKERMIT which directly integrates genome wide optical
maps into contig assembly. We show how genome wide optical maps can be used to
localize reads on the genome and then we adapt the Kermit method, which originally
incorporated genetic linkage maps to the miniasm assembler, to use this information
in contig assembly. Our experimental results show that incorporating genome wide
optical maps to the contig assembly of miniasm increases NGA50 while the number of
misassemblies decreases or stays the same. Furthermore, when compared to the Canu
assembler, OPTICALKERMIT produces an assembly with almost three times higher
NGA50 with a lower number of misassemblies on real A. thaliana reads.

Conclusions: OPTICALKERMIT successfully incorporates optical mapping data directly
to contig assembly of eukaryotic genomes. Our results show that this is a promising
approach to improve the contiguity of genome assemblies.
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Background
The long reads produced by third generation sequencing technologies such as Pacific
Biosciences and Oxford Nanopore have enabled large improvements in de novo genome
assembly. Nevertheless, assemblies produced solely on read data are not complete and
typically contain orders of magnitudes more contigs than the sequenced organism has
chromosomes. To further improve these assemblies, several long-range technologies
such as optical mapping, genetic linkage maps, and Hi-C based analysis have been
developed [1].
Here we concentrate on using optical mapping data to improve genome assembly. Opti-

cal maps are produced by fragmenting the genome to produce hundreds of kilobases long
DNA molecules. Each DNA molecule is then elongated on a plate. A restriction enzyme
which cuts at a specific DNA motif is applied on the DNA molecules and the order and
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length of the resulting fragments are measured by imaging [2, 3]. This results in raw
optical mapping data which is then assembled to genome-wide optical maps.
Nowadays the optical mapping data is commonly utilized after contig assembly to

further scaffold the contigs. We are aware of only two works attempting to use opti-
cal mapping data during contig assembly: AGORA [4] and KOOTA [5]. These tools
were tested only on small genomes but the experiments showed that integrating optical
mapping data to contig assembly can be beneficial.
Here we present OPTICALKERMIT, a contig assembler using both Pacific Biosciences

sequencing reads and a genome-wide optical map. Similar to KOOTA [5], we first locate
the reads on the genome-wide optical map. Whereas KOOTA mapped the in silico
digested reads directly to the optical map, we first create preliminary contigs and use them
to get more accurate location information for the reads. Finally, we assemble the reads
augmented with approximate location information using the guided assembly approach
developed in Kermit [6].
Our experiments show that using the genome-wide optical map increases the NGA50

of the assembled contigs as compared to assembling just the reads with the same assem-
bly method. Furthermore, the number of misassemblies decreased or stayed the same.
When compared to the Canu assembler [7] on real A. thaliana reads, OPTICALKERMIT

produces an assembly with almost three times higher NGA50 and a lower number of
misassemblies.
OPTICALKERMIT is freely available at https://github.com/Denopia/kermit-optical-

maps.

Related work

An optical map is a sequence of lengths of subsequent DNA sequence fragments. A
DNA sequence can be cut at specific places, restriction sites, using restriction enzymes.
Applying a restriction enzyme to a DNA molecule cuts it into fragments at the cor-
responding restriction sites. For example, the enzyme XhoI recognizes the nucleotide
sequence ‘CTCGAG’, and cuts the DNA molecule after the first C-nucleotide. This pro-
cess leaves us with a number of consecutive DNA fragments, whose order is known,
and their length can be measured. The measured lengths put together in order give
us an optical map of the DNA sequence. A simplified example of a DNA sequence
and its optical map can be seen in Fig. 1. The optical map of a genome we want to
assemble is usually generated this way in a laboratory environment. In the case we
have access to the DNA sequence itself, we can use in silico digestion. This means
that the sequence is fragmented computationally by finding each occurrence of a subse-
quence corresponding to a restriction enzyme and cutting it at these sites. For example,
optical maps for reads and contigs can be acquired this way since their sequences
are known.
A basic task in processing optical mapping data is to align the optical maps against each

other or to align in silico digested contigs to an optical map. Work in this area was pio-
neered by Valouev et al. [8] who developed a dynamic programming algorithm to solve
the alignment problem. A similar approach was later used in SOMA [9]. Because of the
quadratic time complexity, these approaches can be slow. Thus several methods have been
developed to align optical mapping data more efficiently. OMBlast [10] uses a seed and
extend approach for alignment. Maligner [11] offers two alignment modes: a sensitive

https://github.com/Denopia/kermit-optical-maps
https://github.com/Denopia/kermit-optical-maps
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Fig. 1 Example DNA sequence and its optical map corresponding to XhoI restriction enzyme. XhoI
recognizes ‘CTCGAG’ sites and cleaves the sequence after the first C-nucleotides. The lengths of the resulting
fragments are then measured to compose the optical map

mode based on dynamic programming and an efficient indexing based approach that tol-
erates unmatched cutting sites in the reference but not in the query optical map. TWIN
[12] uses an FM-index to facilitate efficient alignments, whereas KOHDISTA [13] indexes
the optical maps as an automaton. Once in silico digested contigs have been aligned to a
genome-wide optical map, the alignments can be used to detect misassemblies [14] or to
order the contigs into scaffolds [15].
Optical maps have been used in several genome projects to improve the contiguity of

the assembly, see e.g. [16–21]. However, optical mapping data has usually been used in a
post-processing step after the contigs have been constructed. Some preliminary research
has been done to involve optical maps already during the contig assembly process. For
example, AGORA [4] is an assembler program that can utilize optical maps, but it was
only tested with error-free reads of very small bacterial genomes. Nevertheless, AGORA
got positive results for using optical maps. Another example program called KOOTA [5]
also takes advantage of optical maps during assembly. While KOOTA did not perform
competitively compared to the other current assemblers, it demonstrated that optical
maps can be used to improve specific phases of the assembly process.
In our approach, we will use Kermit [6] to implement a guided assembly. Kermit was

initially developed for genetic linkage maps. A genetic linkage map consists of a set of
markers, e.g. SNVs, on a genome. Typically the markers are divided into chromosomes
and within each chromosome, the markers are further divided into ordered bins. The
markers of a genetic linkagemap are derived from a sequenced cross which is a population
of related individuals. The markers are then assigned to chromosomes and bins within
chromosomes based on the observed hereditary patterns. The bins are ordered, which
means that if two markers are in different bins, we know which marker appears before the
other in the genome, while nothing can be said about the relative order of markers within
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a single bin. Kermit assigns colors to bins, represented as integers starting from 0. If the
integer, in other words, a color, of a bin is smaller than another bin’s, we know that all
markers within it appear before the markers in the other one. Markers in a bin are given
the color of the bin they reside in. Kermit takes as input a set of sequencing reads and a
genetic linkage map. It then maps the markers of the genetic linkage map to the reads and
assigns reads to bins based on these mappings. During contig assembly, the assignment
of reads to bins is used to produce longer contigs than would be possible solely based on
the reads.

Results
Overview of our method

Our method takes as input high error rate third generation sequencing reads such as
those produced by the Pacific Biosciences sequencing technology and a genome-wide
optical map of the target genome. Our aim is to align the reads to the optical map and
then use this location information to perform guided genome assembly. The approximate
location information of reads will be expressed as colors. In our case, each fragment of
the genome-wide optical map has its own color. Thus after the reads have been aligned to
the genome-wide optical map, we know which fragments they overlap and we can color
them with the corresponding colors. The Kermit assembler [6] can then use this color
information for guided genome assembly and thus produce contigs that represent the
reference genome more accurately.
To align the reads to a genome-wide optical map, two problems need to be overcome:

(i) many of the cutting sites have been confounded in the reads because of the high abun-
dance of sequencing errors and (ii) the reads are too short to unambiguously align directly
to the genome-wide optical map.
To solve the first problem, we use CONSENT [22] to correct the reads. To solve the

second problem, we use the corrected reads directly with a de novo assembler to acquire
pre-coloring contigs, contigs that are assembled using non-colored reads. After this in
silico digested optical maps of the pre-coloring contigs are created and aligned to the
reference genome optical map. With optical map alignments, we are able to approxi-
mate the locations of the pre-coloring contigs within the reference genome and color
them accordingly. Most of the contigs can be colored because they are much longer
and their optical maps have more fragments compared to the reads. Next, the reads are
aligned to the pre-coloring contigs. Alignments contain information on how the reads
and contigs overlap, i.e. which contig a read aligns with and in which positions the over-
lap starts and ends. With this information and colored pre-coloring contigs, the reads
can be colored. Afterward, the colored reads are ready to be given to the Kermit assem-
bler as input. Kermit outputs new post-coloring contigs, which are the final product of our
guided genome assembly, representing the reference genome more accurately than the
pre-coloring contigs. The whole assembly workflow is shown in Fig. 2.

Datasets

We used three different sets of reads to test our guided genome assembly pipeline. One
set contained reads of A. thaliana obtained by PacBio sequencing. The two others were
simulated reads of S. cerevisiae and C. elegans obtained by SimLoRD [23], which is a read
generation software mimicking the error pattern of PacBio sequencing.
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Fig. 2 OPTICALKERMIT assembly workflow

All of our read sets had a genome coverage of 40x. A. thaliana reads were chosen
from the larger set of reads from longest to shortest until we got to the target coverage.
Information about the reference genomes and data sets can be seen in Table 1.
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Table 1 Information about the data used in our experiments. Mitochondrial and chloroplast DNA are
excluded

Data sets S. cerevisiae C. elegans A. thaliana

Reference genome NC_001133 - NC_003279 - LR215052 -

accession number NC_001148 NC_003284 LR215056

Reference genome length [Mbp] 12.07 100.27 118.06

Number of chromosomes 16 6 5

Average chromosome length [Mbp] 0.75 16.71 23.61

Number of reads 58 806 488 554 213 113

Total length of reads [Mbp] 481.50 4 013.94 4 787.08

Average read length [Kbp] 8.19 8.22 22.46

For each of the genomes, we simulated a genome-wide optical map by finding the loca-
tions of the cut sites on the reference genome and then in silico digesting the genomes at
these locations.We used the restriction enzymeXhoI in our simulations which recognizes
the cut site ‘CTCGAG’.

Error correction

To error correct each read set, CONSENT [22] was executed on a machine with 12
cores (2.2 GHz) and 64 GB memory. Table 2 shows the runtime and memory usage of
CONSENT on each data set.

Experiments on read coloring

We can make many different decisions regarding how the reads will be colored, and the
optimal settings are not obvious. For this reason, we experimented with different options
to determine how reads should be colored to obtain the most promising results.
We defined the following four key steps in our read coloring process:

1 Align pre-coloring contig optical maps to reference optical map.
2 Align reads to the pre-coloring contigs.
3 Determine the regions each read covers in the pre-coloring contigs.
4 Remove possible gaps in the coloring.

Below we describe each of the steps in detail.
First, we align pre-coloring contig optical maps to reference genome optical map using

the alignment tool by Valouev et al. [8], which will be referred to as VM from here on.
VM outputs an alignment for each contig optical map with a quality score (s-score), and
we need to determine how good the alignment should be for it to be trustworthy enough
to be used in coloring. We experimented with two options here, either use all alignments
(s-score threshold 0) or require a moderate amount of mapping quality (s-score threshold
15).
We also align reads to the pre-coloring contigs, which is done with minimap2 [24].

Minimap2 produces alignments, and among various statistics the number of matching

Table 2 CONSENT error correction results

Error correction S. cerevisiae C. elegans A. thaliana

Time [hh:mm:ss] 04:13:58 21:16:15 76:33:52

Max. resident set size [MB] 6 535 9 027 22 714
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bases between the read and the contig. We decided to try out three different ways to
determine which alignments are suitable for coloring. (i) Use the alignment to a colored
contig with themostmatching bases, if one exists. (ii) Use the alignment to the contig with
the most matching bases. If it is not colored, do not color the read. (iii) Use the alignment
to a colored contig with the most matching bases, if the number of matching bases is at
least t · len(r), where t = 0.8 and len(r) is the read length.
The alignment can leave some of the bases at the ends of a read outside the aligning

section. For the coloring, we could either decide to only consider the aligning part of the
read or extend the alignment site in the contig with the non-aligning tails of the read.
Colors of the reads provide approximate information about their relative positions.

Some regions of the genome can be poorly covered by the pre-coloring contigs. The
regions might not appear in the contigs at all, or contain too many errors. Reads are not
aligned to such regions, thus some of the possible colors do not appear in the reads at
all. These color gaps can be fixed by dropping out the unused colors and readjusting the
numbering of the used colors. We could either let the colors be as they are, or drop out
the missing ones.
We ran experiments on the C. elegans data set to determine how each of these steps

should be handled to get the most promising results. The results of the experiments can
be seen in Table 3. In the end, we decided to adopt the following set of coloring options
for our method.

• No minimum quality score (s-score) in contig coloring.
• A read is colored based on the best aligning contig only.
• Read coloring regions are extended beyond the aligning regions.
• Read colors are adjusted so that the used colors do not contain gaps.

Assembly results

We assembled the three data sets, S. cerevisiae, C. elegans and A. thaliana. The assem-
blies were run on amachine with Intel�CoreTM i5-8250U CPU@ 1.60GHz×8 processor
and 15.5 GB of memory. All three assemblies were evaluated using QUAST (Quality
Assessment Tool for Genome Assemblies) [25]. Table 4 shows the results for pre- and
post-coloring assemblies. Also miniasm has been run on error-corrected reads. These
experiments have been run with a newer version of miniasm than the coloring experi-
ment of the previous section and thus there are small discrepancies between the results
in Tables 3 and 4.
Additionally, we compared OPTICALKERMIT against Canu assembler [7]. We ran Canu

on the CONSENT corrected reads with the correction of the reads by Canu disabled. We
also ran Canu on the original reads allowing it to correct the reads by its own method.
The assembly statistics of Canu are also shown in Table 4. Table 5 shows the runtime and
memory usage statistics of miniasm, OPTICALKERMIT, and Canu.
During contig assembly, OPTICALKERMIT does not consider reads that have not been

colored. Thus it is possible that merely leaving out these reads improves the assembly. To
investigate this, we performed the following experiment on theC. elegans data set. Instead
of coloring the reads according to the genome-wide optical map, we colored each read
that aligned to a contig with the same color unique to the contig, and ran OPTICALKER-
MIT on this unicolored read set. Table 6 shows the results of this experiment. We see that
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Table 3 Comparison of C. elegans post-coloring contig assembly results with different read coloring
schemes. Results are obtained by running Quality Assessment Tool for Genome Assemblies, QUAST
5.0.2, on the contigs and reference genome with ‘–large’ argument

C. elegans pre-coloring contig results usingminiasm

Minimum Read Extended Adjusted Number of Length of Mis- NGA50

s-score coloring coloring coloring contigs contigs [Kbp] assemblies [Kbp]

- - - - 111 100 430 11 2 656

C. elegans post-coloring contig results using OPTICALKERMIT with color propagation

Minimum Read Extended Adjusted Number of Length of Mis- NGA50

s-score coloring coloring coloring contigs contigs [Kbp] assemblies [Kbp]

0 Only best No No 123 97 709 6 2 868

0 Best colored No No 162 97 408 6 1 741

0 Best hi-scoring No No 150 98 341 8 2 868

0 Only best Yes No 123 97 709 6 2 868

0 Best colored Yes No 162 97 408 6 1 741

0 Best hi-scoring Yes No 151 98 368 8 2 868

15 Only best No No 119 97 562 6 2 868

15 Best colored No No 157 97 274 6 1 741

15 Best hi-scoring No No 151 98 320 8 2 868

15 Only best Yes No 119 97 562 6 2 868

15 Best colored Yes No 157 97 274 6 1 741

15 Best hi-scoring Yes No 152 98 347 10 2 868

0 Only best No Yes 119 97 713 7 2 868

0 Best colored No Yes 162 97 434 6 1 741

0 Best hi-scoring No Yes 148 98 375 8 2 868

0 Only best Yes Yes 119 97 713 7 2 868

0 Best colored Yes Yes 162 97 434 6 1 741

0 Best hi-scoring Yes Yes 152 98 421 8 2 868

15 Only best No Yes 115 97 566 7 2 868

15 Best colored No Yes 157 97 300 6 1 741

15 Best hi-scoring No Yes 149 98 354 10 2 868

15 Only best Yes Yes 115 97 566 7 2 868

15 Best colored Yes Yes 157 97 300 6 1 741

15 Best hi-scoring Yes Yes 153 98 399 10 2 868

C. elegans post-coloring contig results using OPTICALKERMIT without color propagation

Minimum Read Extended Adjusted Number of Length of Mis- NGA50

s-score coloring coloring coloring contigs contigs [Kbp] assemblies [Kbp]

0 Only best No No 93 100 192 8 2 868

0 Best colored No No 92 100 175 11 2 683

0 Best hi-scoring No No 131 100 022 10 2 868

0 Only best Yes No 93 100 192 8 2 868

0 Best colored Yes No 92 100 175 11 2 683

0 Best hi-scoring Yes No 130 100 019 10 2 868

15 Only best No No 102 100 414 10 2 868

15 Best colored No No 96 100 270 12 2 683

15 Best hi-scoring No No 131 99 982 12 2 868

15 Only best Yes No 102 100 414 10 2 868

15 Best colored Yes No 96 100 270 12 2 683

15 Best hi-scoring Yes No 130 99 979 12 2 868

0 Only best No Yes 94 100 215 8 3 028

0 Best colored No Yes 92 100 200 11 2 683

0 Best hi-scoring No Yes 133 100 077 10 2 868
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Table 3 Comparison of C. elegans post-coloring contig assembly results with different read coloring
schemes. Results are obtained by running Quality Assessment Tool for Genome Assemblies, QUAST
5.0.2, on the contigs and reference genome with ‘–large’ argument (Continued)

0 Only best Yes Yes 94 100 215 8 3 028

0 Best colored Yes Yes 92 100 200 11 2 683

0 Best hi-scoring Yes Yes 133 100 086 10 2 868

15 Only best No Yes 103 100 436 10 3 028

15 Best colored No Yes 96 100 296 12 2 683

15 Best hi-scoring No Yes 133 100 037 12 2 868

15 Only best Yes Yes 103 100 436 10 3 028

15 Best colored Yes Yes 96 100 296 12 2 683

15 Best hi-scoring Yes Yes 133 100 046 12 2 868

the results for using unicolored reads are practically the same as the pre-colored assem-
bly, i.e. running miniasm directly on the non-colored reads. Thus the improvements that
we see in Table 4 are due to using the genome-wide optical map to guide the assembly.
Our assembly pipeline consists of the following steps: pre-coloring contig assembly,

optical map generation and alignment, read-to-contig aligning, read coloring, and post-
coloring contig assembly. Table 7 has the time andmemory consumptions of each of these
steps.

Table 4 Pre- and post-coloring contig assembly results using miniasm, OPTICALKERMIT and Canu.
Canu (CONSENT) shows the assembly results of Canu when executed on the CONSENT corrected
reads and Canu shows the assembly results when Canu is executed on the original reads which are
first corrected by Canu

S. cerevisiae contig assembly results

Number Number Length of Length of

of of > 50Kbp contigs > 50Kbp contigs Mis- NGA50

contigs contigs [Kbp] [Kbp] assemblies [Kbp]

miniasm 26 21 12 050 11 987 4 777

OPTICALKERMIT 23 18 12 031 11 968 4 810

Canu (CONSENT) 24 16 12 111 11 970 3 810

Canu 22 16 12 039 11 984 1 922

C. elegans contig assembly results

Number Number Length of Length of

of of > 50Kbp contigs > 50Kbp contigs Mis- NGA50

contigs contigs [Kbp] [Kbp] assemblies [Kbp]

miniasm 110 74 100 398 99 737 8 2 641

OPTICALKERMIT 87 57 100 241 99 706 7 3 568

Canu (CONSENT) 276 191 100 080 99 035 7 807

Canu 20 12 100 261 100 080 1 10 769

A. thaliana contig assembly results

Number Number Length of Length of

of of > 50Kbp contigs > 50Kbp contigs Mis- NGA50

contigs contigs [Kbp] [Kbp] assemblies [Kbp]

miniasm 532 121 133 522 120 191 61 1 469

OPTICALKERMIT 230 87 123 447 119 034 59 1 587

Canu (CONSENT) 3 482 390 79 897 30 616 85 20

Canu 459 314 118 772 114 913 100 592
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Table 5Memory and time usage of the different tools. Miniasm, OPTICALKERMIT, and Canu
(CONSENT) use CONSENT corrected reads and the time and memory used for the correction is not
included in the statistics. The row titled Canu shows the memory and time usage of Canu with the
original reads. Although in this case we allowed Canu to use its own read correction, here we show
the memory usage and runtime of Canu without the correction step for fairer comparison. The
correction step of Canu took 2 h, 22 h, and 29 h of time and 5 GB, 11 GB, and 12 GB memory on
S. cerevisiae, C. elegans, and A. thaliana, respectively

S. cerevisiae assembly memory and time usage

Memory [MB] Time [hh:mm:ss]

miniasm 4 542 00:06:05

OPTICALKERMIT 4 542 00:06:43

Canu (CONSENT) 2 268 00:34:31

Canu 2 247 00:33:14

C. elegans assembly memory and time usage

Memory [MB] Time [hh:mm:ss]

miniasm 14 592 00:55:18

OPTICALKERMIT 14 592 01:08:18

Canu (CONSENT) 7 970 06:55:09

Canu 11 713 07:28:55

A. thaliana assembly memory and time usage

Memory [MB] Time [hh:mm:ss]

miniasm 15 285 06:09:29

OPTICALKERMIT 15 413 07:06:39

Canu (CONSENT) 8 255 17:43:56

Canu 10 901 23:53:23

Discussion
In our experiments with simulated data, OPTICALKERMIT produced longer contigs than
an unguided assembly, i.e. the miniasm [26] pre-coloring assembly. NGA50 statistic
improved and the number of contigs decreased with both simulated and real reads. This
suggests that OPTICALKERMIT is able to connect some contigs that would otherwise be
left separate. From the technical point of view, this means that OPTICALKERMIT is able
to extend non-branching paths in the assembly graph by deleting spurious edges. The
total length of the post-coloring contigs did not drop a considerable amount from the
pre-coloring contigs, so the original genome is still extensively covered. On the S. cere-
visiae genome, the total length of the contigs got slightly further away from the reference

Table 6 C. elegans assembly results with normally colored and unicolored contigs, with miniasm
pre-coloring assembly results for comparison. The most promising coloring parameters were used
without OPTICALKERMIT’s color propagation. The results for unicolored OPTICALKERMIT are practically
the same as the results of the pre-coloring assembly

C. elegans contig assembly results with OPTICALKERMIT (no color propagation)

Number Number Length of Length of

Assembler Coloring Propagation of of >50Kbp contigs >50Kbp contigs Mis- NGA50

contigs contigs [Kbp] [Kbp] assemblies [Kbp]

OPTICALKERMIT Normal No 94 61 100 215 99 637 8 3 028

OPTICALKERMIT Normal Yes 119 55 97 713 96 108 7 2 868

OPTICALKERMIT Unicolored No 111 75 100 430 99 770 11 2 656

OPTICALKERMIT Unicolored Yes 109 74 100 394 99 758 11 2 656

miniasm - - 111 75 100 430 99 770 11 2 656
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Table 7Memory and time usage of different phases of OPTICALKERMIT

S. cerevisiae assembly memory and time usage

Memory [MB] Time [hh:mm:ss] Time [%]

Read-to-read alignment (minimap2) 4 542 00:05:58 88.8

Pre-coloring assembly (miniasm+awk) 179 00:00:07 1.7

Optical map alignment (create + alignment) 44 00:00:05 1.2

Read-to-contig alignment (minimap2) 561 00:00:23 5.7

Read coloring (contig+read coloring) 112 00:00:03 0.7

Post-coloring assembly (Kermit+awk) 179 00:00:07 1.7

Maximummemory / Total time 4 542 00:06:43 100.0

C. elegans assembly memory and time usage

Memory [MB] Time [hh:mm:ss] Time [%]

Read-to-read alignment (minimap2) 14 592 00:53:19 78.1

Pre-coloring assembly (miniasm+awk) 1 131 00:01:59 2.9

Optical map alignment (create + alignment) 818 00:05:08 7.5

Read-to-contig alignment (minimap2) 2 057 00:03:30 5.1

Read coloring (contig+read coloring) 1 613 00:02:30 3.7

Post-coloring assembly (Kermit+awk) 1 131 00:01:52 2.7

Maximummemory / Total time 14 592 01:08:18 100.0

A. thaliana assembly memory and time usage

Memory [MB] Time [hh:mm:ss] Time [%]

Read-to-read alignment (minimap2) 15 210 05:52:37 82.6

Pre-coloring assembly (miniasm+awk) 15 285 00:16:52 4.0

Optical map alignment (create + alignment) 1 597 00:12:16 2.9

Read-to-contigs alignment (minimap2) 2 479 00:19:57 4.7

Read coloring (contig+read coloring) 3 952 00:01:39 0.4

Post-coloring assembly (Kermit+awk) 15 413 00:23:18 5.5

Maximummemory / Total time 15 413 07:06:39 100.0

length. On the other hand, on the C. elegans genome we actually got closer to the refer-
ence genome length. The number of misassemblies stayed the same or even dropped on
the simulated data sets, which is a positive sign.
With the real A. thaliana reads, the total number of contigs produced by OPTICALK-

ERMIT decreased drastically and their total length dropped closer to the total length of
the reference as compared to the unguided assembly by miniasm. The NGA50 statistic
also increased as compared to the pre-coloring assembly and the number of misassem-
blies decreased. Therefore, these experiments show that OPTICALKERMIT is a promising
method for improving genome assemblies also on real read data.
The comparison against Canu gave mixed results. In general, Canu performed better

with its own error correction method than on CONSENT corrected reads. On simu-
lated data, the assemblies produced by Canu using its own error correction method were
both more continuous as evidenced by a higher NGA50 value and had fewer misassem-
blies than contigs produced by OPTICALKERMIT. However, on the real A. thaliana data
set, the NGA50 of contigs produced by OPTICALKERMIT is almost thrice that of con-
tigs produced by Canu with its own error correction method and also the number of
misassemblies is lower for OPTICALKERMIT. Simulated data is usually easier for assem-
blers due to the inability of read simulators to incorporate all artifacts produced by real
sequencing machines. Thus we find the good performance of OPTICALKERMIT on the
real A. thaliana reads encouraging.
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Because real genome-wide optical maps are not readily available for model species
with an accurate and complete reference genome, all our experiments used a simulated
genome-wide optical maps. As future work, it would thus be interesting to see how
OPTICALKERMIT performs with real optical mapping data.
Table 7 shows that the time and memory consumptions of OPTICALKERMIT do not

increase remarkably compared to the unguided approach. The most memory-intensive
tasks are the read-to-read mapping and the assemblies themselves, which are required
in both guided and unguided approaches. The most time-consuming step is the read-to-
read alignment with minimap2 [24]. Even in the worst case, the addition of read coloring
and OPTICALKERMIT assembly was responsible for less than 20% of the total used time.
As compared to Canu, OPTICALKERMIT uses more memory but is much faster. However,
the correction step of Canu is faster than CONSENT which has been used to correct the
reads for OPTICALKERMIT.
Even though the performance regarding time and memory did not suffer too much,

we still need to remember that before everything else all the reads were corrected with
CONSENT [22]. Looking at Table 2 it becomes very obvious that this is actually the step
that was responsible for themajority of the running time, and also requires a large amount
of memory. However, to produce a polished final assembly either the reads need to be
corrected or the final contigs polished both for OPTICALKERMIT and miniasm.
Using optical maps during assembly is a research area that has not been focused on

intensively, but has gathered interest in recent years. A few example programs that uti-
lize optical maps during genome assembly can already be found, like the aforementioned
AGORA [4] and KOOTA [5]. KOOTA is not very competitive as an assembler com-
pared to the other state-of-the-art assemblers, having a weaker N50 score according to
the authors. This was due to the emphasis of the research being on using optical maps to
simplify de Bruijn graphs in the genome assembly, not developing a sophisticated traver-
sal algorithm for it. AGORA assembler also utilized optical maps with de Bruijn graphs,
and it performed quite well as an assembler, but it was only tested with error-free reads of
short bacterial genomes. Here we have developed a guided assembly pipeline that utilizes
optical maps during contig assembly, generates high-quality contigs that are competi-
tive with other assemblers, and is also applicable for genomes more complex than just
bacterial ones.

Conclusions
We have presented a new genome assembly pipeline to utilize optical maps automatically
during the assembly process. First, the long reads are corrected with CONSENT [22]. The
corrected reads are then given to miniasm [26] assembler to produce initial pre-coloring
contigs. Next, optical maps of the contigs are generated computationally and aligned with
the optical maps of the reference genome chromosomes using VM [8]. The contigs are
also aligned with the corrected reads withminimap2 [24]. The optical map alignment data
is then used with the read-to-contig alignments to approximate the origin locations of the
reads within the genome. Location approximations are represented by coloring the reads.
Finally, these colored reads are given to Kermit [6] assembler to produce the post-coloring
contigs as our final assembly product.
The implementation of OPTICALKERMIT is modular. Most of the tasks in the pipeline

could be performed by any tool that can produce the output in the required standard
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format such as FASTA for reads and contigs or PAF for alignments. More specifically,
read error correction, pre-coloring assembly, aligning contigs to the optical map, and
aligning reads to contigs could be performed by any appropriate tool. The post-coloring
assembly phase is more tightly integrated with minimap2 and would thus require further
engineering to adapt for a different assembler.
Our method is complementary to scaffolding tools using optical mapping data such

as OMGS [15] and SEWINGMACHINE [27]. OPTICALKERMIT can improve the length
of contigs, whereas scaffolders order and orient the contigs without modifying the con-
tigs themselves. Thus applying both OPTICALKERMIT and a scaffolder using optical
mapping data could improve both contig and scaffold statistics of an assembly. Alter-
natively, as further work, OPTICALKERMIT could be extended to a scaffolder by lever-
aging the colors assigned to contigs and estimating gaps between contigs based on the
optical maps.
Our OPTICALKERMIT assembly pipeline is able to handle more complex genomes even

with real reads and performs competitively to its unguided counterpart assembler mini-
asm. In the case of real reads, OPTICALKERMIT is also able to produce more contiguous
contigs compared to another state-of-the-art assembler Canu. In summary, the usage of
optical maps seems promising during contig assembly, and more research into this sub-
ject is warranted. We have shown that our proposed assembly scheme can be a viable
option, and could still be improved with further development.

Methods
Error correction

We use third generation Pacific Biosciences long reads which have a high error rate.
Without error correction or contig polishing, the error rate would stay the same for
the final assembly. We decided to address this problem at the beginning of the pipeline
by correcting the reads. Error correction not only improves de novo assembly results,
but in our approach it also helps the guided assembly by improving the quality of the
in silico optical maps. Insertions, deletions, and substitutions affect the observed cut
sites, and correcting these errors helps lost cut sites to be restored and false cut sites
to disappear.
We use CONSENT [22] for correcting the sequencing errors. CONSENT is a fairly

recent error correction tool shown to perform well as compared to the other state-of-
the-art self-correction methods. One weakness of CONSENT is that its running time is
noticeably longer in comparison. We decided this is acceptable because the throughput
and resulting error rate are good.

Pre-coloring contig assembly

The pre-coloring assembler of our choice is miniasm [26], which Kermit assembler [6] is
also based on. Before the miniasm assembly can be run, we need to use a program that
aligns reads to each other. A natural choice for this is minimap2 [24], a successor to the
minimap mapping program introduced in the miniasm article.
Minimap2 finds overlaps between the input reads, and based on the strongest overlaps,

miniasm builds an overlap graph. Miniasm skips the consensus step in the OLC (overlap,
layout, consensus) assembly paradigm, and only looks for non-branching paths, unitigs,
in the graph. Here we call the initial miniasm assembly results pre-coloring contigs.
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Optical map alignment

We express the relative location information between reads, which Kermit [6] requires,
by coloring them with the help of optical maps. The optical maps of the in silico digested
reads often have very few fragments, therefore they are not suitable for reliable mapping.
On the other hand, optical maps of the pre-coloring contigs are easier to align since they
are considerably longer leading to more convincing alignments. This is the reason we
produce pre-coloring contigs and use them to color the reads.
First, the in silico digested pre-coloring contigs from the unguided miniasm assembly

are aligned to the reference genome optical map. After the fragment-to-fragment align-
ments between reference and pre-coloring contig optical maps are known, the contig
optical map fragments can be colored. Next, the reads are aligned with the colored pre-
coloring contigs. The alignments and the contig color information can be used to color
the reads.
We perform optical map alignment with the alignment tool VM [8], which takes errors

occurring in restriction digestion into consideration. As suitable real optical maps were
hard to find, we had to use in silico optical maps. Thus our data does not actually con-
tain restriction digestion optical maps, which VM is specialized in. We assumed it would
still perform well with computationally generated optical maps, which our experimental
results confirmed.
VM calculates two mapping quality scores, the likelihood score used in their model

called s-score, and a heuristic score proposed in [28] called t-score. The s-score is shown
to work noticeably better with real-world optical maps, while with simulated optical the
improvements were minor. As there was no downside in using the s-score, we decided
to only consider it when determining how contigs should be colored. Our experimental
results suggested that in the best combination of coloring options we should consider
every mapping even if the s-score was low.

Contig coloring

The output of VM [8] tells us which cuts of the query optical map align to which cuts
of the reference optical map. Another way to interpret this is to consider it as fragments
mapping to each other. The blocks of fragments between contig and reference optical
maps also align to each other similarly to the cut sites. There are two obvious ways to
color the contigs, either color the cuts or color the fragments. We decided to go with the
fragment coloring route, but using cut sites seems like a valid approach too.
We number the fragments of the reference optical maps from 0 to n − 1 where n is

the number of fragments. To separate the fragments of different chromosomes in the
reference optical map, we add k ·s to the number of the fragment, where k is the number of
the chromosome and s is an appropriate power of ten so that optical maps of two different
chromosomes do not share a color. This guarantees that every color occurs only once in
the whole reference optical map. The resulting fragment numbers of the reference optical
map represent the colors in our coloring scheme. Fragments of the pre-coloring contig
optical maps are colored based on their mapping with reference optical map fragments.
There are four different fragment mapping cases listed below:

1 one to one
2 one to many
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3 many to one
4 many to many

In the first case, the query fragment (contig optical map fragment) is simply colored
with the matching target fragment (reference optical map fragment) color. In the second
case, the query fragment is split into as many fragments as there are target fragments.
The new fragment lengths are relative to the target fragment sizes, but their total length
is that of the query fragment. These new fragments replace the old fragment, and they
are colored with the colors of their respective target fragments. In the third case, all query
fragments are colored with the color of the single target fragment. The fourth case is
similar to the second case, but now the total length of the new fragments is the total length
of all query fragments. Figure 3 illustrates these four different coloring cases.
These coloring cases can be generalized into a single coloring rule. Suppose N contig

fragments with total length n map to M reference fragments with total length m. Create
new fragments by taking the M reference fragments and dividing their lengths by m and
multiplying by n. Keep the colors the same as in the original M reference fragments and
replace the original N contig fragments with these new colored fragments.
VM gives at most one alignment for each query optical map. Even though VM provides

scores for each alignment, our experiments suggest that it would be beneficial to ignore
the scores and color every pre-coloring contig that can be aligned to the reference optical
map.

Read coloring

Now we are ready to color the corrected reads. We start by aligning the reads to the
pre-coloring contigs. This is done with minimap2 [24] to keep our aligning processes con-
sistent, since this program is also used in pre-coloring contig assembly with miniasm [26],
read correcting with CONSENT [22], and post-coloring contig assembly with Kermit [6].

Fig. 3 Contig coloring example illustrating four different fragment alignment cases. Case 1: Contig fragment
a aligns to reference fragment B, and is colored with its color. Case 2: Contig fragment b aligns to reference
fragments C and D. It is split into two fragments b1 and b2 whose total length is equal to the length of b,
keeping the proportions of C and D. Fragment b1 is colored with the color of fragment C, and b2 with the
color of D. Case 3: Contig fragments c and d align to reference fragment E. Fragments c and d are merged
together into one fragment cd which is colored with the color of fragment E. Case 4: Contig fragments e and
f align to reference fragments F and G. Fragments e and f are transformed into two fragments ef1 and ef2
with the total length of e and f, keeping the proportions of fragments F and G. Fragment ef1 is colored with
the color of fragment F, and ef2 with the color of G
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Minimap2 can produce multiple possible alignments for a single read. We decided each
read should be colored based on one alignment only, and the intuitive solution is to use
the ‘best’ alignment for coloring. After the initial experiments seen in Table 3, we decided
on a simple heuristic. A read is colored based on the alignment with the greatest num-
ber of matching bases between it and the aligning section of the contig. If the number
of matching bases was less than 80% of the whole length of the read, the read was left
uncolored.
For each alignment, the start and end positions in a contig are known, and they are used

to determine which colors of the contig are used to color the read. For example, suppose
the aligning section in the contig starts from position i and ends at position j. We begin
to add the lengths of the contig fragments together one by one. The first fragment n, for
which the sum of the lengths of the contig fragments [ 0, n] is greater than i is chosen
as the starting fragment i.e. the starting color. Similarly, the first fragment m, for which
the sum of the lengths of the contig fragments [ 0,m] is greater than j, is used as the end
fragment i.e. the end color. As Kermit only uses the start and end colors of a read, this
coloring scheme suffices.
We deliberated if the beginning and end parts of the reads that are left outside of the

aligning section should be used to extend the coloring beyond the aligning section in the
contig. For example, suppose the alignment in the contig starts again at position i and
ends at position j. Additionally, suppose we also know that there is a sequence of length
a in the beginning of the aligning section of the read, and a sequence of length b at the
end of aligning section of the read. The question is, would it be beneficial to adjust the
starting position of the aligning section in the contig to start at i − a and to end at j + b
to possibly extend read colors. Figure 4 shows how extending could affect the coloring.
As we expected, the coloring experiments revealed that this does not greatly affect the
quality of the resulting post-coloring contigs. If the extensions would have a huge impact
on the coloring, it would suggest that the aligning section itself would be short, which
should not be possible because we are requiring it to have at least 80% matching bases.
Nevertheless, we decided to include the extensions in our pipeline.
After the reads are colored, some of the available colors in the contigs can be completely

unused by the reads. In other words, none of the read alignments overlapped with the

Fig. 4 Simplified example of the two different cases of read coloring when a reasonably strong alignment
with a colored contig is found. Case 1: Left hand side coloring is based on the aligning segment only. Case
2: Right hand side coloring is based on the aligning segment extended with the lengths of the non-aligning
sections of the read
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fragments corresponding to the missing colors. To be clear, colors between the start and
end colors of a read are also considered as used. It is possible that two reads are in reality
physically close to each other, even though there is a color gap between them due to inac-
curate alignments for example. This might affect the performance of Kermit negatively,
so we decided to shift the colors so that there were no missing colors.
As a simplified example, suppose all the reads used colors {1, 2, 4, 7, 8, 10}, while the

colors appearing in the reference were {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. These read colors would
then be mapped to consecutive colors {1, 2, 3, 4, 5, 6} in their respective order; 1 → 1,
2 → 2, 4 → 3, 7 → 4, 8 → 5, 10 → 6. Then the already colored reads would be recol-
ored according to these mappings. They would still keep their respective order, but the
gaps caused by unused colors get removed. Colors were only shifted within a single chro-
mosome’s colors i.e. the s · k term in the colors was left untouched. We ran experiments
with and without this adjustment to determine its effects, and the results suggest that
readjusting the colors is beneficial.

Post-coloring contig assembly

After all the data is gathered and processed to get the corrected and colored reads, we can
start assembling post-coloring contigs. Our OPTICALKERMIT assembly pipeline uses the
Kermit assembler [6] to do this. Kermit works very similarly to the miniasm assembler
[26], the difference being that during the layout step Kermit cleans the assembly graph
based on the given colorings.
Kermit starts by building an overlap graph with the help of minimap2 [24] alignments.

The same read-to-read alignments that were used during the pre-coloring assembly can
be used here. Each vertex of the graph represents a DNA sequence, and we know which
read is responsible for it. Since the reads have been colored, the vertices can also be
colored accordingly, leading to a colored overlap graph.
As with miniasm, a unitig is again defined as a maximal non-branching path in the

overlap graph. However, with the vertex color information, we can alter the paths that are
used to build the unitig. An edge from vertex vi to vertex vi+1 means the corresponding
sequences overlap, and can be merged together to be used as a part of a unitig. Some of
the connections are bound to be erroneous, which can be detected with the help of the
colors.
Suppose an edge (vi, vi+1) exists in the graph, but the color number of vertex vi was

larger than that of vertex vi+1. The color information suggests that vi should appear after
vi+1, but the edge says they are connected together in the reverse order. We trust the
coloring information acquired from the optical maps more than the overlap edge, and it
is removed completely from the graph. Even if the order of the colors is correct, their
distance can cause suspicion. If the colors are very far apart, we can deduce the vertices
should not be connected with an edge, and such edges are also removed from the graph.
These kind of contradicting edges are called inconsistent edges.
A consistent edge (vi, vi+1) is an edge such that at least one of the colors of vertex vi+1

is equal to or exactly one greater than at least one of the colors in vertex vi. By default
Kermit only allows the colors to differ by at most one which is the option we used, but
this restriction can be adjusted by the user. All edges that do not follow this requirement
are discarded. This way we cannot take a path with a huge gap or where some of the
sequences are in the wrong order.
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Some of the reads might be left uncolored due to difficulties and uncertainties during
the coloring step. An edge that is connected to an uncolored vertex would be automat-
ically removed, but Kermit alleviates this problem of uncolored vertices by allowing the
colors to propagate. An uncolored vertex is assigned all colors of the vertices that are
reachable from it by traveling only through uncolored vertices. There is a limit on how
far the colors should propagate, since allowing the colors to flow as far as possible would
most likely lead to incorrect colorings. By default Kermit allows the colors to propagate
through five vertices, but this can again be changed to the user’s liking. If propagated col-
ors have some missing colors between them, the vertex is deleted completely from the
graph because the propagated coloring is not coherent which makes us suspicious of its
correctness.We experimented with the default option and the no propagation option, and
the results can be seen in Table 3. The best read coloring option combination was found
when Kermit’s color propagation was disabled, which is the reason we did not allow the
colors to propagate in the final assembly pipeline.
After inconsistent edges are removed, Kermit starts looking for the unitigs. Instead

of finding all maximal non-branching paths, we automatically find all maximal non-
branching rainbow paths. A rainbow path is like a normal path, but all the colors must
appear in increasing order and only once. Kermit loosens this condition by allowing con-
secutive vertices to use the same color on a path. The removal of all inconsistent edges
guarantees that every path we find is also a rainbow path. Kermit outputs these maximal
non-branching rainbow path unitigs as our final assembly product.
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