31 research outputs found

    Improved annotation with <i>de novo</i> transcriptome assembly in four social amoeba species

    Get PDF
    Background: Annotation of gene models and transcripts is a fundamental step in genome sequencing projects. Often this is performed with automated prediction pipelines, which can miss complex and atypical genes or transcripts. RNA sequencing (RNA-seq) data can aid the annotation with empirical data. Here we present de novo transcriptome assemblies generated from RNA-seq data in four Dictyostelid species: D. discoideum, P. pallidum, D. fasciculatum and D. lacteum. The assemblies were incorporated with existing gene models to determine corrections and improvement on a whole-genome scale. This is the first time this has been performed in these eukaryotic species. Results: An initial de novo transcriptome assembly was generated by Trinity for each species and then refined with Program to Assemble Spliced Alignments (PASA). The completeness and quality were assessed with the Benchmarking Universal Single-Copy Orthologs (BUSCO) and Transrate tools at each stage of the assemblies. The final datasets of 11,315-12,849 transcripts contained 5,610-7,712 updates and corrections to >50% of existing gene models including changes to hundreds or thousands of protein products. Putative novel genes are also identified and alternative splice isoforms were observed for the first time in P. pallidum, D. lacteum and D. fasciculatum. Conclusions: In taking a whole transcriptome approach to genome annotation with empirical data we have been able to enrich the annotations of four existing genome sequencing projects. In doing so we have identified updates to the majority of the gene annotations across all four species under study and found putative novel genes and transcripts which could be worthy for follow-up. The new transcriptome data we present here will be a valuable resource for genome curators in the Dictyostelia and we propose this effective methodology for use in other genome annotation projects

    Is Promiscuity Associated with Enhanced Selection on MHC-DQα in Mice (genus Peromyscus)?

    Get PDF
    Reproductive behavior may play an important role in shaping selection on Major Histocompatibility Complex (MHC) genes. For example, the number of sexual partners that an individual has may affect exposure to sexually transmitted pathogens, with more partners leading to greater exposure and, hence, potentially greater selection for variation at MHC loci. To explore this hypothesis, we examined the strength of selection on exon 2 of the MHC-DQα locus in two species of Peromyscus. While the California mouse (P. californicus) is characterized by lifetime social and genetic monogamy, the deer mouse (P. maniculatus) is socially and genetically promiscuous; consistent with these differences in mating behavior, the diversity of bacteria present within the reproductive tracts of females is significantly greater for P. maniculatus. To test the prediction that more reproductive partners and exposure to a greater range of sexually transmitted pathogens are associated with enhanced diversifying selection on genes responsible for immune function, we compared patterns and levels of diversity at the Class II MHC-DQα locus in sympatric populations of P. maniculatus and P. californicus. Using likelihood based analyses, we show that selection is enhanced in the promiscuous P. maniculatus. This study is the first to compare the strength of selection in wild sympatric rodents with known differences in pathogen milieu

    Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates

    Get PDF
    Hox genes exert fundamental roles for proper regional specification along the main rostro-caudal axis of animal embryos. They are generally expressed in restricted spatial domains according to their position in the cluster (spatial colinearity)—a feature that is conserved across bilaterians. In jawed vertebrates (gnathostomes), the position in the cluster also determines the onset of expression of Hox genes (a feature known as whole-cluster temporal colinearity (WTC)), while in invertebrates this phenomenon is displayed as a subcluster-level temporal colinearity. However, little is known about the expression profile of Hox genes in jawless vertebrates (cyclostomes); therefore, the evolutionary origin of WTC, as seen in gnathostomes, remains a mystery. Here, we show that Hox genes in cyclostomes are expressed according to WTC during development. We investigated the Hox repertoire and Hox gene expression profiles in three different species—a hagfish, a lamprey and a shark—encompassing the two major groups of vertebrates, and found that these are expressed following a whole-cluster, temporally staggered pattern, indicating that WTC has been conserved during the past 500 million years despite drastically different genome evolution and morphological outputs between jawless and jawed vertebrates

    Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas

    Get PDF
    Abstract Background Ecdysis is an innate behaviour programme by which all arthropods moult their exoskeletons. The complex suite of interacting neuropeptides that orchestrate ecdysis is well studied in insects, but details of the crustacean ecdysis cassette are fragmented and our understanding of this process is comparatively crude, preventing a meaningful evolutionary comparison. To begin to address this issue we identified transcripts coding for neuropeptides and their putative receptors in the central nervous system (CNS) and Y-organs (YO) within the crab, Carcinus maenas, and mapped their expression profiles across accurately defined stages of the moult cycle using RNA-sequencing. We also studied gene expression within the epidermally-derived YO, the only defined role for which is the synthesis of ecdysteroid moulting hormones, to elucidate peptides and G protein-coupled receptors (GPCRs) that might have a function in ecdysis. Results Transcriptome mining of the CNS transcriptome yielded neuropeptide transcripts representing 47 neuropeptide families and 66 putative GPCRs. Neuropeptide transcripts that were differentially expressed across the moult cycle included carcikinin, crustacean hyperglycemic hormone-2, and crustacean cardioactive peptide, whilst a single putative neuropeptide receptor, proctolin R1, was differentially expressed. Carcikinin mRNA in particular exhibited dramatic increases in expression pre-moult, suggesting a role in ecdysis regulation. Crustacean hyperglycemic hormone-2 mRNA expression was elevated post- and pre-moult whilst that for crustacean cardioactive peptide, which regulates insect ecdysis and plays a role in stereotyped motor activity during crustacean ecdysis, was elevated in pre-moult. In the YO, several putative neuropeptide receptor transcripts were differentially expressed across the moult cycle, as was the mRNA for the neuropeptide, neuroparsin-1. Whilst differential gene expression of putative neuropeptide receptors was expected, the discovery and differential expression of neuropeptide transcripts was surprising. Analysis of GPCR transcript expression between YO and epidermis revealed 11 to be upregulated in the YO and thus are now candidates for peptide control of ecdysis. Conclusions The data presented represent a comprehensive survey of the deduced C. maenas neuropeptidome and putative GPCRs. Importantly, we have described the differential expression profiles of these transcripts across accurately staged moult cycles in tissues key to the ecdysis programme. This study provides important avenues for the future exploration of functionality of receptor-ligand pairs in crustaceans

    Brain Transcriptional Profiles of Male Alternative Reproductive Tactics and Females in Bluegill Sunfish

    Get PDF
    We thank Scott Colborne for his help in collecting bluegill, Dave Bridges for providing the R script to convert Ensemble IDs to stickleback homologs, and David Winter and Jeramia Ory for providing Python script used in the bioinformatics analyses. We thank Doug Haywick for producing Fig 1. We also thank Shawn Garner, Tim Hain, Lauren Kordonowy, and Lindsay Havens, and three anonymous reviewers for helpful comments on the manuscript.Bluegill sunfish (Lepomis macrochirus) are one of the classic systems for studying male alternative reproductive tactics (ARTs) in teleost fishes. In this species, there are two distinct life histories: parental and cuckolder, encompassing three reproductive tactics, parental, satellite, and sneaker. The parental life history is fixed, whereas individuals who enter the cuckolder life history transition from sneaker to satellite tactic as they grow. For this study, we used RNAseq to characterize the brain transcriptome of the three male tactics and females during spawning to identify gene ontology (GO) categories and potential candidate genes associated with each tactic. We found that sneaker males had higher levels of gene expression differentiation compared to the other two male tactics. Sneaker males also had higher expression in ionotropic glutamate receptor genes, specifically AMPA receptors, compared to other males, which may be important for increased spatial working memory while attempting to cuckold parental males at their nests. Larger differences in gene expression also occurred among male tactics than between males and females. We found significant expression differences in several candidate genes that were previously identified in other species with ARTs and suggest a previously undescribed role for cAMP-responsive element modulator (crem) in influencing parental male behaviors during spawning.Yeshttp://www.plosone.org/static/editorial#pee

    The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): de novo assembly, annotation, and proteomics validation

    Get PDF
    corecore