10 research outputs found

    Development of Photonic Crystal Fiber Based Gas/ Chemical Sensors

    Full text link
    The development of highly-sensitive and miniaturized sensors that capable of real-time analytes detection is highly desirable. Nowadays, toxic or colorless gas detection, air pollution monitoring, harmful chemical, pressure, strain, humidity, and temperature sensors based on photonic crystal fiber (PCF) are increasing rapidly due to its compact structure, fast response and efficient light controlling capabilities. The propagating light through the PCF can be controlled by varying the structural parameters and core-cladding materials, as a result, evanescent field can be enhanced significantly which is the main component of the PCF based gas/chemical sensors. The aim of this chapter is to (1) describe the principle operation of PCF based gas/ chemical sensors, (2) discuss the important PCF properties for optical sensors, (3) extensively discuss the different types of microstructured optical fiber based gas/ chemical sensors, (4) study the effects of different core-cladding shapes, and fiber background materials on sensing performance, and (5) highlight the main challenges of PCF based gas/ chemical sensors and possible solutions

    Establishment of effective plantlets regeneration protocol via isolated microspore culture in Malaysian indica rice MR219

    No full text
    The current study recognised the issues encountered in regenerating Malaysia MR219 rice plantlet via microspore culture and attempted to develop an efficient protocol in overcoming the restraints. In the present study, a high proportion of uninucleate microspores (49.17%) was isolated from Stage 2-Segment II panicle (59–61 days), which also exhibited the highest callus initiation rate of 8.50%. Maintenance of the panicles under a cool temperature of 4 °C for 7 days before isolating the microspores, resulted in the highest microspore viability of 58.33% and callus initiation rate of 9.33%. The microspore isolation protocol was also optimised in the present study. The filtration sieve engagement with a pore size of 80 µm and further suspension centrifugation at 800 rpm for 5 min produced the highest microspore viability percentage and callus initiation rate. The incorporation of 3.0 mg/L kinetin in conjunction with 0.5 mg/L 2,4-D greatly enhanced the callus initiation rate, with 11.33%. The callus proliferation capacity, with the formation of 481.67 mg callus, was significantly promoted by the addition of 1.0 mg/L kinetin and 0.5 mg/L 2,4-D into the growth medium. Moreover, a higher green plantlet regeneration frequency of 2.83% was induced by the supplementation of 8% sucrose, which produced an average of 3.50 green plantlets

    The regulatory roles of phosphatases in cancer

    Get PDF
    The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3-kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies

    The role of melatonin in autoimmune and atopic diseases

    No full text

    Structurally uniform and atomically precise carbon nanostructures

    No full text
    corecore