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Abstract 

The relevance of potentially reversible post-translational modifications required 

for controlling cellular processes in cancer is one of the most thriving arenas of 

cellular and molecular biology. Any alteration in the balanced equilibrium 

between kinases and phosphatases may result in development and progression 

of various diseases including different types of cancer, though phosphatases 

are relatively under-studied.  Loss of phosphatases such as PTEN (phosphatase 

and tensin homologue deleted on chromosome 10), a known tumor 

suppressor, across tumor types lends credence to the development of PI3-

kinase inhibitors alongside use of the phosphatase's expression as a biomarker, 

though phase 3 trial data are lacking. In this review, we give an updated report 

on phosphatase dysregulation linked to organ-specific malignancies. 
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A. Gastrointestinal malignancies 
 

1. Esophageal cancer 

Loss of PTEN expression in esophageal cancer is frequent, amongst other genes 

alterations characterizing this disease. Zhou et al. found that over-expression of PTEN 

suppresses growth and induces apoptosis in esophageal cancer cell lines, through down-

regulation of BCL2 resulting in changes in cell cycle progression. Moreover they have shown 

that PTEN gene therapy reduces tumour size in vivo, suggesting PTEN as an important 

biological marker (1). In addition, Hou et al. investigated the relationship of PTEN status and 

cell sensitivity to chemotherapeutic drugs in vivo. ESCC cells transfected with or without the 

wild type (wt) PTEN were inoculated subcutaneously into nude mice. Both wt PTEN and 

cisplatin could inhibit tumour growth and induce cell apoptosis. Cisplatin had the strongest 

inhibitory effects on tumours produced by cells transfected with wt PTEN, indicating that PTEN 

can increase the in vivo sensitivity of ESCC cells to cisplatin (2). As further evidence of the 

importance of PTEN in esophageal carcinogenesis, Juan Man et al. have recently found a 

strong association of genetic polymorphisms in PTEN with high risk of ESCC (3). 

In another study, immunohistochemistry (IHC) of 100 patient’s tumours with revealed 

that CDC25A and CDC25B phosphatases are strongly expressed in the cytoplasm of cancer 

cells (4). Furthermore, due to the role of CDC25B in cell growth, Dong et al. examined the 

levels of CDC25B antibodies (ab’s) in sera from 134 esophageal squamous cell carcinoma 

patients and determined that they are higher compared to healthy subjects. Detection of 

CDC25B ab’s in combination with traditional tumour markers (i.e. CEA, SCC-Ag, CYFRA21-1) 

resulted in an increased sensitivity of detection, with 64.2% of patients testing positive for at 

least one of these markers. Moreover, high levels of CDC25B ab’s in sera were significantly 

associated with poor survival in advanced ESCC suggesting that they may have a clinical 

utility in ESCC screening and diagnosis (5). 

Cao et al. investigated the role of PTPN12 in ESCC and showed that PTPN12 protein 

expression is higher in normal para-cancerous tissues than in 20 ESCC tissues. By performing 

IHC, high and low expression of PTPN12 was found in 62.1% and 37.9% of ESCCs, 

respectively. Moreover they demonstrated that patients with completely resected ESCC and 

tumours with high PTPN12 expression tumour had favorable survival compared to that of 

patients with low PTPN12, therefore proposing that PTPN12 can be used as an independent 

predictor of patient survival (6). 

Yan-Jie You et al. evaluated the methylation levels of protein tyrosine phosphatase 

receptor type O (PTPRO) promoter as a potential biomarker in ESCC. Their analysis revealed 

hypermethylated PTPRO promoter status in 27 (75%) out of 36 primary tumours. No 

methylated PTPRO was observed in normal peripheral blood samples from 10 healthy 

individuals. In addition, in PTPRO-silenced cell lines, expression was dramatically restored by 

http://en.wikipedia.org/wiki/Gastrointestinal_cancer


  Phosphatases and cancer 

4 

 

treatment with the demethylating agent 5-azadC, confirming that DNA methylation is a 

mechanism regulating PTPRO expression and that aberrant methylation of the PTPRO 

promoter is directly responsible for transcriptional inactivation of its expression in ESCC cell 

lines. These findings suggest that PTPRO is a common target for epigenetic silencing via 

methylation in ESCC, and that its methylation may be involved in esophageal cancer 

tumourigenesis (7). Moreover, Motiwala et al. examined the levels of PTPRO methylation in 

blood cells, since the presence of detectable methylated promoter DNA in blood cells has been 

reported to indicate the presence of circulating cancer cells during the process of distant 

metastasis. Interestingly, PTPRO methylation occurred only in B-cell population of a subset of 

patients with chronic lymphocytic leukemia (CLL), but not in normal B or T lymphocytes, 

indicating that methylated PTPRO in blood cells is cancer-specific (8). Finally, a high frequency 

of PTPRO hypermethylation in primary tumours significantly correlated with tumour stage, 

indicating that PTPRO methylation may be involved also in invasion of ESCC (7). 

 

2. Gastric Cancer 

Insertion of cagA-protein from H. pylori into the gastric epithelial cells specifically binds 

and activates PTPN11 oncoprotein (9, 10). Activated PTPN11 induces cell growth and motility 

(11), while deregulation of PTPN11 by cagA induces abnormal proliferation and migration of 

gastric epithelial cells that leads to gastric carcinogenesis (12). Several studies detected 

aberrant DNA methylation of PTPN6 gene in gastric carcinomas. H. pylori infection led to a 

decrease in the methylation levels in PTPN6 (13), inconsistent with a previous report (14). 

Yang et al. reported that PTPN1 gene was amplified in gastric cancer tissues (15). With 

regards to the clinicopathologic characteristics, PTPN1 was associated with tumour metastasis 

and tumour-node-metastasis stage, implicating its involvement in the development of gastric 

cancer (16). As suggested, PTPN1 inhibitors may also be useful in the treatment of gastric 

cancer (17).  

PTPN3 and PTPN4 are two closely-related non-receptor tyrosine phosphatases that 

are expressed in human gastric cancer cells and tissue specimens (18). PTPN3 

dephosphorylates and cooperates with p38γ, to form a complex that may increase Ras 

oncogenesis through PDZ-mediated direct binding (19). The phosphatase activity of PTPN4 

has been implicated in the regulation of cytoskeletal events (20). Overexpression of PTPN4 in 

COS-7 cells decreased colony formation, inhibited cell growth and decreased saturation 

density of these cells (21). 

Wu and colleagues applied a RT-PCR-based protein-tyrosine phosphatase (PTP) 

profiling approach to study PTP expression in human gastric cancer samples, and identified 

sixteen PTPs in the cancer tissues; only six of them (PTPN4, PTPRB, PTPRH, PTPRJ, 

PRPRN and PTPRZ) were expressed in gastric cancer tissue (22), while PTPRA expression 

was significantly high in cancer tissues. The role of protein tyrosine phosphatase receptor type 
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A (PTPRA) in gastric cancer might be linked to its biological role in integrin signaling, cell 

adhesion and activating the SRC family tyrosine kinases (23-25). Reduced protein tyrosine 

phosphatase receptor type G (PTPRG) expression was detected by IHC in gastric tumour (22) 

indicating it might be a tumour suppressor gene. In addition, differences in DNA methylation of 

PTPRG genes between primary tumour and metastatic lymph nodes of gastric cancer was 

also observed (26). Until now, the detailed mechanisms underlying PTPRG-mediated cell 

signaling are undescribed.  

In a mutational analysis study conducted by Wang et al., protein tyrosine phosphatase 

receptor type T (PTPRT) was the most common mutated gene (27). Lee et al., also detected a 

splice-site mutation in PTPRT gene in 1 of 48 gastric carcinomas and suggested that PTPRT 

phosphatase domain mutation may not play arole in the development of human cancers (28).  

Finally, various reports have demonstrated over-expression of protein tyrosine 

phosphatase receptor type H (PTPRH) (29), DUSP1 (30) and phosphatase of regenerating 

liver (PRL-3) (31-35) in human gastric cancer, while Ooki et al., (36) showed that PRL-3 

genomic amplification was associated with advanced stage.  

 

3. Colorectal Cancer 

A systemic mutational analysis of the tyrosine phosphatome in human CRC has identified 83 

somatic mutations in PTPRF, PTPRG, PTPRT, PTPN3, PTPN13 and PTPN14 genes (27). 

Similarly, frameshift mutations have been depicted in PTPRA, PTPRS, PTPN5, PTPN13, 

PTPN21 and PTPN23 (37), while hypermethylation of PTPRO was showing microsatellite 

instability colorectal tumours (38).  

PTPN13 was shown to interact with the cytosolic domain of Fas (39), while Miyazaki et 

al. reported over-expression of PTPN13 enhances sensitivity to Fas-mediated apoptosis (40). 

However, Yao et al. demonstrated that expression of PTPN13 in more than 70% of colon 

cancers, was related to resistance against Fas-mediated apoptosis in vivo and in vitro (41). 

These contradictory reports reveal that PTPN13 may possess dual role in colon carcinoma, 

either as an oncogene or as a tumour suppressor depending on the cellular context in which it 

is studied.  

Lassmann et al. evaluated distinct genomic DNA alterations using array comparative 

genomic hybridization and identified DNA amplification of PTPN1 in 22% of the colorectal 

cancer cases, with the highest percentage in changes in chromosomal-positive tumours (42). 

PTPN1 has been responsible for the activation and elevation of Src kinase activity in six 

human epithelial colon cancer cell lines (43). 

Enhanced Src activity mediates signals and directs downstream activation of the JAK-

STAT pathway. Signal transducer and activator of transcription 3 (STAT3) has been shown to 

be activated in colon tumours and cell lines (44, 45). Protein tyrosine phosphatase receptor-



  Phosphatases and cancer 

6 

 

type T (PTPRT) and protein tyrosine phosphatase receptor-type D (PTPRD) were shown to be 

able to regulate STAT3 (46, 47). As aforementioned, the mutation screen established that 

PTPRT was the most frequently mutated PTP in colorectal carcinomas. Zhang et al. 

demonstrated that PTPRT specifically regulates phosphorylation of STAT3-Tyr 705 in CRC 

(46). Over-expression of PTPRT activity inhibited cell growth, suggesting a tumour suppressor 

role (27). In addition, paxillin, a direct substrate of PTPRT, can be dephosphorylated at Tyr88 

which is involved in cell-cell adhesion. Mutated PTPRT could promote CRC tumourigenesis 

and cell migration, while studies demonstrated the development of colon tumours in PTPRT 

knockout mice (48). It has been shown that PTPRD is frequently mutated in colon cancer (47, 

49). Mutations in PTPRD abrogate the ability to regulate STAT3 and loss of PTPRD function 

promotes cancer progression (50).  

The role of PTPRA in CRC is poorly understood. PTPRA mRNA levels were found to 

be increased 70% in late stage (Dukes’ D) colorectal tumours compared to adjacent normal 

colon mucosa (51). Interestingly, over-expression of PTPRA increases substrate adhesion (25) 

and stromal invasion (52), while its silencing suppresses anchorage-independent growth and 

induces apoptosis in colon cancer cell lines (53).  

PTPRH is also abundantly expressed in human CRC specimens (54) and CRC cell 

lines (29). In PTPRH deficient mice had normal intestinal tract, but loss of PTPRH inhibited 

tumourigenesis in mice with heterozygous mutation of the adenomatous polyposis coli gene, 

suggesting that PTPRH plays a role in promoting the intestinal tumourigenesis (55). 

Another significant phosphatase that modulated JAK-STAT pathway is the low 

molecular weight protein tyrosine phosphatases (LMW-PTP). Malentacchi et al. observed an 

increase in the expression of LMW-PTP mRNA and protein level in colon tumour samples (56); 

clinically, overexpression of LMW-PTP is generally associated with a proliferative phenotype 

and poor prognosis (57). Here, over-expression of PRL-3 in primary colorectal tumour is 

associated with tumour aggressiveness (58, 59). Jiang et al. have shown that the loss of TGFβ 

signaling leads to upregulation of PRL-3 expression and activation of the PI3K/PKB pathway 

(60), which can promote epithelial-mesenchymal transition (61). Further on, PTEN was down-

regulated by PRL-3 as shown by protein expression and IHC (62-64). 

Moreover, DUSP1 is overexpressed in colon tumours (65); Montagut et al. suggested 

DUSP1 as a potential biomarker of response to cetuximab in metastatic CRC patients (66). 

Finally, Ruivenkamp and colleagues demonstrated that frequent deletion of the PTPRJ 

gene occurs in large percentage of sporadic colorectal tumours (67) and also found loss of 

heterozygosity at the PRPRJ locus in sample of human CRC (62).  
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4. Pancreatic Cancer 

More than half of pancreatic ductal adenocarcinoma (PDAC) tissues exhibit increased 

PI3K and AKT expression (68-70). PH domain and Leucine rich repeat protein phosphatases 

(PHLPP) levels are markedly reduced in human PDAC that have elevated AKT 

phosphorylation (71). Studies have shown that PHLPP1 and PHLPP2 are able to terminate 

AKT signaling by directly dephosphorylating and inactivating AKT resulting in great 

suppression of tumour growth (72, 73).  

Although PTEN mutations are rarely found in pancreatic cancer (74), it is important to 

note that PTEN loss of function may result in decreased sensitivity to apoptotic stimuli that 

could promote cellular over-growth and tumourigenesis (75-77). Chow et al. reported that 

TGFβ reduces PTEN expression and enhances pancreatic cancer cells motility through 

calcium-dependent PKCα (78). They also demonstrated that TGFβ down-regulates PTEN via 

activation of NF-κB activity (79). Mutations and changes of expression levels of TGFβ and 

SMAD4 proteins could be observed in pancreatic cancer tissues (80-82). SMAD4 is a tumour 

suppressor able to mediate signals from a family of TGFβ ligands and via phosphorylation of 

receptor-activated SMADs (R- SMADs) proteins forming a trimeric complex. This complex 

translocates into the nucleus, binds to specific DNA sequence and activates gene 

transcription(83). Protein phosphatase, Mg2+/Mn2+ dependent, 1A (PPM1A/PP2Cα) was 

identified as a phosphatase that dephosphorylates the SXS motif of R- SMADs and terminates 

TGF-β signaling (84).  

Dual specificity protein phosphatase 6 (DUSP6) is a cytoplasmic dual specificity 

phosphatase that negatively regulates members of the mitogen-activated protein (MAP) kinase 

superfamily (MAPK/ERK, SAPK/JNK, p38), which are associated with cellular proliferation and 

differentiation (85). DUSP6 dephosphorylates the active form of ERK2, which is constitutively 

expressed in pancreatic cancer cells (86). Moreover, DUSP6 was reduced in invasive 

pancreatic carcinoma (86) and was missing in the majority of cultured pancreatic cancer cells 

(87, 88).  

Finally, NF-κB pathway has also been implicated in pancreatic cancer (89). Based on 

the classical NF-κB pathway cascade, the phosphorylated IKK (IκB kinase) can further 

phosphorylate IκB, an inhibitory subunit of the NF-κB that is proteolytically degraded upon 

phosphorylation (90). Protein phosphatase 2A (PP2A) is required for signal-dependent 

activation of IKK (91). Inhibition of PP2A triggers apoptosis in pancreatic cancer cell line 

through constant activation of the NF-κB pathway (92). Li et al. ((93)) also suggested that 

treatment with cantharidin, selectively inhibits PP2A and suppresses the growth of PANC-1 

cells when c-Jun N-terminal kinase pathway is over-activated.  
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B. Genito-urinary tumours 

 

Renal cell and bladder cancer 

Alkaline phosphatases (ALPL) are a group of tissue specific and tissue non-specific 

(TNAP) enzymes that have been previously implicated in suppressing meningiomas (94). 

However the relationship between ALPL levels and kidney cancer has not been established. 

The kidney expresses ALPL, which is used as a marker for organ function in patients’ dialysis 

(95). High serum levels of ALPL have been associated with paraneoplastic syndrome, as 

observed in 77 out of 365 patients with stage II-IV renal cell carcinoma, decreasing the 5 year 

survival to 35.7% (96). ALPL is also used as a predictive marker for bone metastases, which is 

a common occurrence in patients with kidney and bladder cancer (97).  

CDC25 phosphatases are frequently over-expressed in various malignancies, including 

RCC (98). In renal cancer cells, down-regulation of CDC25B induces a G2/M arrest and 

subsequent apoptosis with a concomitant reduction of the 14-3-3 protein. Furthermore, 

inhibition of the CDC25B reduces the rate of renal cell migration and invasion (99). Cpd5 is a 

selective inhibitor of CDC25 phosphatases, which acts as an anti-neoplastic agent for RCC. 

(100). 

Serine/threonine-protein phosphatase PP1-alpha catalytic subunit (PPP1CA) is 

involved in pRb dephosphorylation and ceramide accumulation induced by RAS (101). Its role 

has been investigated in bladder cancer, as a potential marker for monitoring disease 

progression. Assessment of PPP1CA levels in urine was performed and correlated with 

standard cytology. Sensitivity of PPP1CA was 68.8% and the specificity was 62.7% (p < 

0.001). A positive correlation was found between bladder cancer grade and sensitivity, while 

for grade 1 and grade 2 tumours, PPP1CA and other evaluated markers were even superior to 

cytology (102). 

Protein tyrosine phosphatase, non-receptor type 21 (PTPN21) stimulates the Src-EGF 

signaling axis, and its involvement in actin cytoskeleton, cell adhesion and in regulating the 

stability and recycling of the EGFR has also been reported. PTPN21 is required for growth and 

motility of urothelial cancer cells in vitro, and its high expression in human bladder cancer 

tissue correlates with advanced tumour stage and invasiveness. Therefore, PTPN21 

represents a novel biomarker and possible therapeutic target for bladder cancer. PTPN21over-

expression is thought to be an early step in urothelial cancer progression. In terms of 

expression in vivo, PTPN21 is absent from the normal bladder tissue, hyperplastic urothelium, 

and urothelial papilloma, whereas its expression gradually increases from low grade to high 

grade urothelial carcinoma (103).  

In a study in clear cell RCC (ccRCC), which originates from proximal tubular tissue, 

microsatellite alternations at chromosome 9p23-22 (D9S168) were more common at late stage 
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renal cancer and associated with poor survival. The D9S168 alteration was associated with 

low expression of protein tyrosine phosphatase receptor delta (PTPRD), while IHC analysis 

revealed down-regulation of PTPRD expression in ccRCC, suggesting it as a potential tumour 

suppressor (104). 

The PTEN gene is important for the growth suppression of RCC, by inhibiting cell 

proliferation. In renal carcinoma cell lines and primary RCC, the frequency of loss of flanking 

markers around PTEN is 20–43%, and somatic intragenic mutations are less frequent (<17%). 

However, the rate of PTEN inactivation at the protein level may be more frequent than that 

identified at the genetic level (105). A tissue microarray analysing 440 RCC specimens 

revealed that PTEN expression is typically decreased in RCC (106), and represents an early 

step in renal cell carcinogenesis. A negative correlation between pAKT and PTEN was found 

in primary RCC. In terms of cellular distribution, PTEN was weaker at the cytoplasmic level 

and stronger in the nucleus in RCC compared to normal renal parenchyma. Multivariate 

analyses revealed that altered expression of PTEN was associated with adverse patient 

outcome. (107). However, interestingly in patient samples with invasive muscular bladder 

cancer, PTEN was found to be located in the cell cytoplasm and a positive correlation between 

PTEN and pAKT was observed (108). In addition, lower PTEN expression was found in 

patients who died of metastases, within 5 years after surgery, compared to long-term survivors, 

indicating a critical role of PTEN in RCC progression. In particular, the pro-metastatic effects 

upon PTEN loss in RCC are achieved through Shc (109). PTEN attenuation also mediates 

resistance to cisplatin-induced apoptosis, through increasing levels of the cyclin kinase 

inhibitor p21 (110).  

In primary bladder cancers loss of PTEN heterozygosity is seen in 23% of cases. 

Several portions of the gene were found deleted, namely that containing potential tyrosine and 

serine phosphorylation sites. Missense mutations in exon 1 and exon 2, that may inactivate the 

phosphatase activity of the PTEN gene were detected in bladder cancer cell lines derived from 

advanced stage bladder cancers, and were absent from a cell line derived from a lower stage 

cancer. However, in vivo analysis in 33 bladder cancer specimens, including the 25 T3/T4 

bladder carcinomas, failed to replicate in vitro findings. Only 8% of the primary bladder cancer 

specimens are thought to harbor a mutation or homozygous deletion in PTEN, raising the 

possibility that another gene in close proximity to PTEN is the actual primary target of 

inactivation (111). In invasive bladder cancer, loss of PTEN in combination with altered p53 

has adverse consequences and serves to identify a subgroup of patients with particularly 

aggressive disease, which are candidates for mTOR inhibitors as a therapeutic strategy (112). 

Finally, a recent mouse study found that PTEN deletion only influenced urothelial morphology 

when coupled with a deletion of LKB1 a tumour suppressor acting through TSC1 (113),. 

Cyclin-dependent kinase-associated protein phosphatase (KAP) is expressed at the 

G1/S transition of the cell cycle and forms a complexes with cyclin-dependent kinase 2 
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(CDK2). KAP is over-expressed in renal cell carcinoma, while a correlation with higher 

histological grade has been shown (114). KAP promotes growth of RCC, and confers 

resistance to anti-TNFalpha induced apoptosis by preventing caspase-3 activation. 

Furthermore, HEK293 cells over-expressing KAP have a greater ability of cell invasion. In vivo 

xenograft models confirmed that KAP induces tumourigenicity with significantly larger 

xenograft tumours arising in nude mice inoculated with KAP over-expressing cells.  

DUSP1 expression in renal cancer cells contributed to cell survival by attenuating the 

apoptosis inducing signal cascade via JNK. DUSP1 is up-regulated at the mRNA and protein 

level in low-grade bladder cancers, and its expression is inversely proportional to tumour 

grade, suggesting its relevance in the early stages of bladder cancer development (115). 

DUSP9 expression correlates with the onset of kidney carcinoma, where it is down-regulated 

at both the mRNA and at the protein level. Patients with tumours exhibiting low DUSP9 

expression had significantly worse overall survival, with DUSP9 expression, having an 

independent predictive value (116). 

HER-2 positive bladder cancers also exist and carry an adverse prognosis. 

Suppression of IFN- is often used as a therapeutic approach in bladder cancer patients. This 

treatment is probably less effective in HER-2 overexpressing/amplified tumours due to 

upregulated Src homology 2-containing PTPN11 signaling. A dysfunction in PTPN11regulation 

can cause abnormal cell growth and induce different kinds of cancers (117). PTPN11 is mainly 

expressed in the collecting duct system and in distal tubules, and hardly in glomeruli and 

proximal tubules. Its abundance was evident in rare renal tumours such as chromophobe RCC 

or oncocytoma (118).  

Finally, the inhibitor of apoptosis stimulatory protein phosphatase (iASPP) is a key 

inhibitor of p53. iASPP is important for bladder cancer cell proliferation (119), where it has 

been shown that iASPP knockdown inhibits cell growth and colony formation (120). 

 

Prostate cancer 

 

PTEN mutations were firstly identified in multiple advanced cancers including prostate 

cancer (PCa), leading to its potential role as a tumour suppressor gene (121, 122). Shortly, 

different groups confirmed that PTEN inactivation was frequently shown in prostate cell lines, 

xenografts as well as primary prostate cancer (123-126). Homozygous deletion of PTEN in the 

prostate epithelium resulted in malignant prostate carcinoma displaying its association with 

cancer progression (127). Biological function studies showed by dephosphorylation of PIP3 to 

PIP2, PTEN tumour suppressor acts as a vital negative regulator of the PI3K/AKT/mTOR 

pathways affecting many aspects of cellular activity including growth and survival, whereas 

loss of PTEN leads to activation of these signaling cascades (77, 128). In AKT-dependent 

mouse model, mTOR inhibition reserved prostate intraepithelial neoplasia (PIN) through the 
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modulation of apoptosis and HIF-1 related pathways (129). Inhibiting PDK1, which activates 

AKT and S6K, prevented the development of prostate adenocarcinoma induced by PTEN 

heterozygous in mice (130). It is now clear that tumours harboring PTEN loss are highly 

dependent on PI3K/AKT signal for survival and proliferation. Meanwhile, inhibition of these 

kinases can converse the effects of PTEN loss (131). Therefore, pharmacological targeting 

PI3K/AKT and mTOR kinases have provided potential therapeutic importance in PTEN null 

cancers, including PCa. Indeed, several molecules including PI3K inhibitor (XL147), AKT 

inhibitor (perifosine) and mTOR inhibitors (CCI-779 and RAD001) are under clinical 

development (132).  

Furthermore, PTEN loss was shown to play an important role in the survival crosstalk 

between PI3K/AKT and androgen receptor (AR) in PCa progression. Upon acute androgen 

ablation in human PCa cell line LNCaP, PTEN inactivation displayed increased activity of the 

PI3K/AKT axis indicating a possible compensating phenomenon across PI3K/AKT and AR 

signaling (133, 134). Prostate cancers with PTEN null relapsed after androgen withdrawal and 

enjoyed the capability of growth in the absence of androgen. Moreover, global analysis of 

genomic alterations elicited by homozygous PTEN deletion identified genes associated with 

cancer metastasis (135). In addition, it has been reported that PTEN can suppress the 

transcriptional activity of AR and cell proliferation induced by androgen as well as prostate-

specific antigen, whereas androgens prevented PCa cells from PTEN-dependent apoptosis in 

the presence of AR (136). Similar evidence described that PTEN can directly interact with AR 

resulting in an inhibition of the AR nuclear translocation and an increase of the AR degradation 

in a PI3K/AKT independent manner, while in PTEN-null context both AR expression and 

activity were elevated compared with wild-type MEFs (137). Collectively, PTEN loss may lead 

to a gain-of-function of AR in both PI3K/AKT dependent and independent environment. 

Coordinately, loss of PTEN and intensified AR may contribute to tumourigenesis and androgen 

refractory PCa.  

Pro-apoptotic protein Par-4 was shown to be essential for PTEN-dependent apoptosis, 

while AKT can directly bind to Par-4 and inhibit its activity through phosphorylation resulting in 

the survival of prostate cancer cells (138). Recent studies demonstrated that Par-4 inactivation 

associates with PTEN loss in a high percentage of human prostate carcinomas. Similar to 

PTEN-heterozygous mice, Par-4-null mice only developed benign prostate lesions, whereas 

simultaneous Par-4 loss and PTEN haploinsufficiency caused invasive prostate cancer in mice 

through activating AKT signaling as well as NF-kappaB pathway (139).  

PP1 and PP2A are two major classes of serine/threonine protein phosphatases 

involved in many different cellular processes, including survival, cell cycle and apoptosis 

through dephosphorylation of key regulators such as PKA, AKT, PKC and glycogen synthase 

kinase 3 (GSK3) (140, 141). PP2A comprises of several subunits: scaffolding, catalytic and 

regulatory. Each subunits of PP2A exists in at least two isoforms (142, 143). PPP2CA levels 
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were found decrease in majority of androgen-independent PCa cell lines and in cancer lesions 

as compared with the adjacent normal/benign tumour tissues (144). PPP2R2A, a potential 

tumour suppressor gene, was found commonly deleted among PCa with homozygous 

deletions and no significant association between common single nucleotide polymorphisms of 

PPP2R2A and sporadic prostate cancer. These findings suggested that it may play an 

important role in prostate cancer tumourigenesis on somatic levels (145). In PCa, caveolin-1 

was shown to bind to and inhibit PP1 and PP2A resulting in AKT activity enhancement 

indicating an important interplay involving both two phosphatases in tumourigenesis (146). 

Recent studies showed that PP1 can regulate AR protein stability and cellular localization via 

dephosphorylation of Ser-650 (147). 2,4,3',5' tetramethoxystilbene (TMS), a synthetic trans-

stilbene analog, was able to induce PP2A activation leading to inhibition of AKT. This in turn 

stimulated expression of cell cycle inhibitor p27(kip1) in PC-3 cells (148). A failed recruitment 

of PP2A-Bα by TGF-β type ǀ receptor was suggested to be partly responsible for TGF-β 

abundance in malignant prostate cells (149). Moreover, PP2A activity was decreased in 

androgen-independent PCa cells (C4-2) compared with androgen-dependent LNCaP cells, 

whereas inhibition of PP2A enabled LNCaP cells to grow in an androgen-deprived condition 

(150). Sodium selenate, a specific selenium-containing compound, was identified as PP2A 

activator which significantly augmented the activity of PP2A, thereby inhibiting VEGF-induced 

growth and vessel branching of endothelial cells, and obstructing tumour neovascularisation. 

This anti-angiogenisis effect via PP2A allowed it into a phase ǀ study in patients with castration-

resistant PCa and results showed a similar effect to other anti-angiogenic agents (151, 152). 

The cell division cycle 25 (CDC25) families are dual specificity phosphatases 

functioning in activation of cyclin-dependent kinases (CDK), which in turn modulate cell cycle 

progression. In mammalian cells, three isoforms have been identified: CDC25A, CDC25B and 

CDC25C (153). CDC25A and CDC25B were shown to be overexpressed in human PCa 

tissues and high Cdc25B associated with high Gleason scores and aggressiveness in PCa 

(154, 155). These two different studies also demonstrated that CDC25A can suppress 

androgen-responsive promoter via physically interaction with AR, whereas CDC25B can 

function as a coactivator or AR in a hormone-dependent manner in LNCaP. Similarly, CDC25C 

expression was elevated in PCa in comparison with normal prostate tissues and its spliced 

isoform was also found to be correlated with increased growth in PCa (156). Theaflavin (TF), a 

black tea polyphenol, can cause G2/M phase arrest in PC-cells by inducing cyclin kinase 

inhibitor p21 (waf1/cip1) and inhibiting CDC25C and cyclin B (157). Taken together, several 

studies have shown that CDC25 family phosphatases are important players in PCa 

progression and may provide potential therapeutic targets in PCa. 

SHP1, an SH2 domain-containing protein tyrosine phosphatase, was detected in 

normal prostate, benign prostate hyperplasia, prostate epithelial cells and well differentiated 

adenocarcinoma, whereas diminished SHP1 expression was observed in malignant prostate 
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tissue and poorly differentiated advanced prostate cancer (158-161). Moreover, SHP1 

overexpression decreased PC-3 cell proliferation (159). Tassidis et al. demonstrated the 

expression of SHP1 mRNA and protein in two human prostate cancer cell lines, LNCaP and 

PC-3, were at different levels (161). In this study, silencing SHP1 in LNCap, which expresses 

high amount of endogenous SHP1 protein, exhibited an increase in cellular proliferation and 

cyclin D1. In contrast, in PC-3 cells, with low endogenous level of SHP-1 expression, 

overexpression of SHP-1 resulted in a decrease in proliferation and cyclin D1. A recent study 

showed that depletion of SHP1 in PC-3 cells caused G1 phase cell-cycle arrest by increasing 

p27 protein stability, due to its capability of regulating PI3K/AKT pathway and cyclin-dependent 

kinase 2 (CDK2) activity. This indicated that SHP1 may play a role in the regulation of cell 

cycle progression (162). 

SHP2, an SH2 domain-containing protein tyrosine phosphatase sharing homology with SHP-1, 

is also expressed in prostate cancer cell lines including PC-3, DU145, LNCaP and LNCap-IL6+ 

as well as patient specimens with PCa. SHP2 staining from 122 patients showed that low 

cytoplasm intensity associated inversely with prostate volume while staining in the nuclear was 

positively correlated with extracapsular extension. This implicated that SHP-2 ablation in the 

cytoplasm correlated with enhanced tumour growth (163). However, other studies reported that 

SHP2 may act as a proto-oncogene product by increasing Ras-MAPK signaling (164). 

 

C. Gynaecologic tumours 

 

1. Endometrial cancer  

There are two main types of endometrial cancer (EC) namely type-I, which is estrogen 

receptor and progesterone receptor positive with low grade and type-II with clear-cell or serous 

morphology and high grade (165), (166, 167). Currently, endocrine and chemotherapy are 

being used to treat type-I EC (168). Although most clinical trials and treatment regimens do not 

stratify patients according to type, research at molecular level have identified distinct genetic 

alterations and signaling pathways between the two types. For example, type I cancer 

frequently has deregulated PI3K/PTEN/AKT pathway and loss of PTEN function while type-II 

has alterations in P53 and /or P16 pathways along with over expression and amplification of 

HER2. 

PP2A is a well-known tumour suppressor which inhibits RAF-MEK-ERK pathway by 

inhibiting activity of ERK and RAF besides inhibiting the downstream signaling of RAS pathway 

via de-phosphorylation and inhibition of c-Myc, RALA and AKT. Depending on the type of 

cancer, this function of PP2A has been shown to be mediated by regulatory β subunits (169). 

On the contrary, somatic missense mutations in PPP2R1A, which encodes the α-isoform of the 

PP2A scaffolding subunit, were demonstrated in high-grade serous endometrial tumours (170).  
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Constitutive activation of MAPK pathway is known to play an important role in EC and 

since DUSP6 can negatively regulate ERK2, Chiappinelli et al. studied its methylation status in 

EC. They identified that silencing of DUSP6 is uncommon and unlikely to cause activation of 

MAPK pathway in EC (171). On the other hand, LMW-PTP, was studied and a significant 

association was identified in low grade EC with genotypes carrying the *C allele along with 

high concentration of S isoform (172).  

Finally, Jay et al. studied the role of phosphatases in determining racial inequality in EC. 

Using microarray they identified phosphoserine phosphatase (PSPH), which is essential for the 

synthesis of L-serine, and designated phosphor-serine phosphatase like (PSPHL) as the most 

over-expressed genes in EC in African-Americans when compared to Caucasians (173). 

 

2. Cervical cancer 

The role of Protein phosphatase 1 (PP1) in tumour metastasis was studied by 

knockdown of PP1 and its regulator NIPP1 in HeLa cells. Knockdown of PP1 prevented 

migration of HeLa cells by inhibiting Cdc42 signaling pathway (174).Zeng et al. identified 

Protein phosphatase 1 inhibitor 5 (IPP5) as a tumour suppressor in cervical cancer; over-

expression of mutant IPP5 in HeLa cells, caused G2/M arrest both in vitro and in vivo via 

inhibition of ERK activation (175). Furthermore, Protein phosphatase 1, regulatory subunit 7 

(PPP1R7) was shown to be significantly up-regulated in metastatic CC patient samples after 

radiotherapy (176). Moreover, hSHIP, a human SH2-containing inositol-5-phosphatase, has 

also been shown to inhibit growth and act as a tumour suppressor in CC. In vitro and in vivo 

studies by He et al. have shown that stable over expression of hSHIP induces S-Phase arrest 

along with down regulation of AKT1/2 expression and phosphorylation, thereby inhibiting 

proliferation of cervical cancer HeLa cells (177). Taken together, PP1 and its regulatory 

subunits along with hSHIP, play an important role in progression and therapeutic response in 

CC and can prove to be new therapeutic targets. 

Dual specificity phosphatase 3 (DUSP3) is known to dephosphorylate ERK1/2 and 

JNK1/2 MAPK kinases, which are key regulators of cellular differentiation, proliferation and 

apoptosis. In CC, knockdown of DUSP3 inhibited the growth of HeLa cervical cancer cells by 

increasing the expression of cyclin dependent kinase inhibitor, p21 and inhibiting G1-S and 

G2-M cell cycle transition (178). This in vitro study was further supported by detection of 

increased expression and nuclear localization of DUSP3 in cervix cancer cell lines when 

compared to normal keratinocytes as well as in HPV positive cell lines when compared to HPV 

negative cell lines. Furthermore, increased expression was identified in primary cervix cancer 

biopsies, including squamous cell carcinomas of unterine cervix and squamous intra epithelial 

lesions indicating potential use of DUSP3 as a new marker for progression of CC and as a new 

target for anticancer therapy (179). Small-molecule inhibitors for DUSP3 have been developed 
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which can inhibit enzymatic activity of DUSP3 at nanomolar concentrations while inhibiting the 

proliferation of cervix cancer cell lines without affecting proliferation of primary normal 

keratinocytes (180). 

PP2B or serine/threonine phosphatase calcineurin (CaN) was shown to promote CC 

cell proliferation by directly interacting and enhancing c-Jun protein stability and activity. This 

was confirmed in cervical tissue samples that showed decreased phosphorylation of c-Jun and 

enhanced PP2B and c-Jun expression (181). In contrast,PP2B was shown to be down-

regulated in malignant squamous carcinomas (182). This inconsistency might be due to the 

small number of samples used in both the studies and requires further investigation. On the 

other hand, no mutations were identified in PPP2R1B gene which encodes the beta isoforms 

of the subunit A of the PP2A between normal and cancer (183). 

Expression of SHP-2 tyrosine phosphatase, was negatively associated with IFN-β 

expression in CC while its silencing inhibited growth of SiHa CC cell line by inducing 

expression of IFN-β, (184). Other phosphatases that can either inhibit or promote CC include 

hSHIP, a human SH2-containing inositol-5-phosphatase and DUSP-3 respectively (177, 179, 

180). 

Cancerous inhibitor of protein phosphatase 2A (CIP2A) was shown to be over 

expressed in CC when compared to normal tissue by IHC and RT-PCR. More importantly, 

papillomavirus 16 E7 oncoprotein directly upregulated CIP2A expression which could enhance 

proliferation and growth of CC cells by modulating c-Myc expression (185).  

Finally, mutation and loss of PTEN has also been shown to drive tumourigenesis here 

(186, 187), as previously described.  

 

3. Ovarian cancer  

Inactivation of PTEN, by genetic mutation is well-known in ovarian cancer (OC) (188). 

Several in vitro studies have shown that PTEN can regulate growth, invasion, migration and 

resistance to chemotherapy in OC (189-193). Interestingly, PP2A has been shown to regulate 

PTEN; inhibition of PP2A decreased the expression of PTEN and enhanced phosphorylation of 

PTEN and AKT, causing increased migration/invasion of OC in fibrillar collagen, indicating 

PP2A as a tumour suppressor in OC. This was further supported by detection of decreased 

expression and activity of PP2A in OC tissue (194).  

Expression of CIP2A, studied in 562 serous ovarian cancer patients by IHC, showed 

strong cytoplasmic staining in 40% of the samples and was associated with high grade, 

advanced stage and poor outcome (195).On the other hand, inhibition of PP2A was essential 

for the apoptosis induced by doxorubicin (196) and translocation of PP2A to plasma 

membrane was essential for gonadotropin-releasing hormone (GnRH) antagonist, cetrorelix 

induced apoptosis in GnRH responsive ovarian cancer cells (197). 
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A study by Manzano et al. evaluating the expression of 68 phosphatases in ovarian 

epithelial and cancer cell lines identified a 10-25 fold higher expression of DUSP1 in normal 

compared to malignant OC cell lines. This was confirmed by IHC staining in normal and OC 

specimens and was shown to be a critical factor in the progression of cancer (198).  

PTPN13as found to be increased both at RNA and protein level in Fas resistant OC cell 

lines as well as in OC patient samples studied using tissue microarray (199). Knockdown of 

PTPN13 using siRNA enhanced the sensitivity of SKOV3 cells to carboplatin indicating that it 

can play a key role in carboplatin resistance (200). 

 In 106 OC patient samples, cell cycle related phosphatases, CDC25A and CDC25B 

were found to be commonly expressed and were associated with poor prognosis independent 

of tumour grade, histotype, stage and residual tumour after surgery, thereby, indicating 

potential role of these phosphatases to be used as prognostic factors (201). 

Using northern blots and immunoblotting , Mok et al. have shown that PTPN6 was over 

expressed in 7 of the 8 ovarian epithelial carcinoma cell lines both at RNA and protein level 

along with over-expression in invasive ovarian epithelial cancer tissues (202). 

Cisplatin is one of the most widely used drugs for treating OC. Sensitivity to Cisplatin is 

known to be partly mediated by activation of p53 by checkpoint kinase 1 (CHK1). Protein 

phosphatase magnesium-dependent 1 (PPMD1) is known to deactivate p53 and Chk1 via 

dephosphorylation. Using cisplatin resistant cell lines, Ali et al. showed knockdown of PPMD1 

can re-sensitize resistant cells to cisplatin by activating P53 and CHK1 (203). Moreover, 

PPM1D was shown to be highly expressed at mRNA level in ovarian clear cell carcinoma cell 

lines with amplification at 17q23.2 and was amplified in 10% of primary clear cell carcinomas 

(204). The role of protein phosphatases in cisplatin sensitivity was also studied by Bansal et al. 

and they identified that patients with incomplete response to cisplatin had two-fold lower PP2C 

levels when compared to those with complete response. This was confirmed by western 

blotting in platinum-resistant OC cells (205). Moreover, genome-wide expression profiling of 

SK-OV-3 ovarian cancer cells identified two regulatory subunits of PP2A as key mediators of 

sensitivity to cisplatin and knockdown of each subunit by RNA interference made OC cells 

more responsive to cisplatin (206). 

Polato et al. studied the role of PRL-3 in OC and expression of PRL-3 mRNA was 

found to be higher in stage III OC samples when compared to stage I samples and by using 

siRNA, PRL-3 was shown to be important for growth of OC cells in vitro (207, 208). Moreover, 

PRL-3 regulated migration and invasion of OC cells by interacting with integrin α1, inhibiting 

phosphorylation of integrin β1 and enhancing the downstream phosphorylation of Erk1/2(209). 

In vivo mice studies have shown that monoclonal antibodies against PRL-3 can prevent both 

tumour growth and metastasis of ovarian cancer cells making it a potential target for therapy in 

OC (210).  
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Finally, Tanyi et al. identified decreased mRNA expression of phosphatidic acid 

phosphatase type 2A (PPAP2A, LPP-1) in OC, which is known to degrade lysophosphatidic 

acid that can promote tumour growth and metastasis (211). 

 

 

D. Other tumours 

 

Lung cancer 

Several phosphatase (PTPases) have been identified to play a role in this malignancy. 

Omerovic J. et al. performed a phosphatome RNAi screen in A549 lung cancer cells and 

ranked their effects on phosphorylation of AKT-Ser473. Although, phosphatase and tensin 

homolog (PTEN) appeared to be the main factor involved in inhibiting the oncogenic K-Ras, 

other phosphatases have been identified with similar potencies including protein tyrosine 

phosphatase non-receptor type 2 (PTPN2) and protein tyrosine phosphatase non-receptor 

type J (PTPRJ) (212). PTEN protein expression was reduced or lost in 74% of lung tumours, 

with loss occurring more often in well to moderately differentiated tumours. In NSCLC, loss of 

PTEN protein expression occurs frequently, although the mechanism responsible for loss is 

not clearly attributable to deletion or epigenetic silencing. PTEN loss may also be a favorable 

prognostic marker, although further studies are needed to confirm this finding (213). Scrima et 

al., have suggested protein tyrosine phosphatase non-receptor type 13 (PTPN13) as candidate 

tumour suppressor gene in NSCLC. This gene is frequently inactivated in NSCLC through 

somatic mutation (approximately 8%) or due to loss of protein expression (approximately 73%); 

PTPN13 negatively regulates anchorage-dependent and anchorage-independent growth of 

NSCLC cell lines in vitro (214).                                

The CDC25 phosphatases are known to play an important role in cancer cell growth. 

Increased expression of cell division cycle 25 homolog B (CDC25B) has been reported in 

tumours of different tissue origins, including NSCLC. Analysis of primary tumours and 

corresponding healthy lung tissues from 177 patients with NSCLC revealed an over-

expression of CDC25B in 45.76% of the samples. Moreover, high expression of CDC25B 

correlated with positive expression of endothelin-, and with the number of intratumoural 

microvessels. Statistical analysis of survival data revealed that elevated CDC25B expression 

was significantly associated with shorter disease-free and overall survival, suggesting that 

CDC25B might play an important role in the angiogenic process and in determining the 

prognosis of patients with NSCLC (215).                                        

Another protein known to play a role here is the dual specificity phosphatase 1 

(DUSP1). It has been shown that down-regulation of DUSP1 induced changes in the 

expression levels of genes involved in specific biological pathways, including angiogenesis, 
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MAP kinase phosphatase activity, cell–cell signaling, growth factor and tyrosine-kinase 

receptor activity. Changes in the expression of some of these genes were due to modulation of 

c-Jun-N-terminal kinase and/or p38 activity by DUSP1. Another report showed that silencing of 

DUSP1 inhibits invasion and metastasis in NSCLC tumour (216).  

Moreover, Chitale et al. examined 199 lung adenocarcinomas by integrating genome-

wide data on copy number alterations and gene expression and revealed that non-random 

patterns of copy number alterations are linked to EGFR and KRAS mutation status. They also 

discovered a striking association of EGFR mutations with under-expression of dual specificity 

phosphatase 4 (DUSP4), which is involved in negative feedback control of EGFR signaling. 

Clinically, DUSP4 loss has a significant impact on overall survival, further supporting its 

biological significance in lung adenocarcinomas. 

 DUSP4 loss also associates with p16/CDKN2A deletion and defines a distinct clinical 

subset of lung cancer patients (217). 

Another phosphatase that seems to play a role in tumourigenesis is the protein tyrosine 

phosphatase non-receptor type 12 (PTPN12), by regulating cell adhesion and migration. 

However, the mechanism by which PTPN12 is regulated in response to oncogenic signaling is 

unclear. Zheng et al., have shown that Ras induces extracellular signal-regulated kinase 1 and 

2 (ERK1/2)-dependent phosphorylation of PTPN12 at Ser-571, which recruits peptidylprolyl 

cis/trans isomerase, NIMA-interacting 1 (PIN1) to bind to PTPN12. Isomerization of the 

phosphorylated PTPN12 by PIN1 increases the interaction between PTPN12 and focal 

adhesion kinase (FAK, PTK2) which leads to dephosphorylation of FAK-Tyr397 and the 

promotion of migration, invasion, and metastasis of v-H-Ras-transformed cells (218).  

 

Breast Cancer 

Up-regulation of PTPN1 was first described in human BC cell lines over-expressing the neu 

oncogene (219). Wiener et al. reported a correlation between increased expression of PTPN1 

and HER2 expression human mammary tumours compared with normal breast tissue (220). 

Global deletion of PTPN1 either delayed or protected against mammary cancer in mice, 

depending on the HER2/Neu allele and mice strain used (221, 222), suggesting that inhibition 

of PTPN1 may be a potential target for treating breast cancer. Targeted PTPN1 silencing in the 

mammary epithelium of either established mouse tumours, or in human BC cells xenografts 

grown on HER2 positive mice has been shown to delay the early onset of formation of 

mammary tumours (223).  

Recent studies indicate that PTPN13 may be effective therapeutic target for the 

treatment of breast cancer. Lower levels of PTPN13 have been described in BC and 

metastatic tissue specimens (224) and increased expression of PTPN13 is associated with a 

favorable outcome in BC patients (225). Over-expression of PTPN13 is sufficient to block the 
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IRS-1/PI3K/MAPK pathway (226). In addition, over-expression of PTPN13 in combination with 

anti-estrogen treatment increased apoptotic cell death by the reduction of IGF-1 induced IRS-1 

and AKT phosphorylation (227). PTPN13 can also inhibit tumour aggressiveness via the direct 

dephopshporylation of Src at Y419 (224), which is upregulated in tamoxifen resistance ER-

positive breast cancer patients (228). New therapeutic routes using tamoxifen and SRC 

inhibitors are currently being examined (229, 230).  

Loss of functional PTEN has been described in primary and metastatic breast tumours 

(231, 232) resulting in hyperactivation of the PI3K pathway and an increase in cell proliferation 

(233). Down-regulation of PTEN activity and activation of the PI3K signaling pathway is 

associated with resistance to anti-estrogen therapy (234). Screening for PTEN mutations may 

identify BC patients who may benefit from treatment with AKT inhibitors. In this regard, BC cell 

lines with PTEN mutations were recently described to have increased sensitivity to the novel 

AKT inhibitor MK-2206 (235). 

Several other PTP’s have a tumour suppressor function in BC. PTPN12, has been 

shown to act as a potent tumour suppressor in triple negative breast cancer cells and is more 

frequently inactivated in this BC subtype. Genetically silencing PTPN12 induces transformation 

and disrupts acinar formation in mammary epithelial cells (236). Levels of cytoplasmic protein 

tyrosine phosphatase non-receptor type 9 (PTPN9) inversely correlate with STAT3 in BC 

tissue (237). PTPN9 has been reported to inactivate STAT3 following EGFR 

dephosphorylation in breast cancer cells (238), suggesting that PTPN9 may play a critical role 

in BC development.  

A number of DUSPs are dysregulated in BC. The majority of breast carcinomas, 

including both poorly differentiated and metastatic stages disease, express higher levels of 

DUSP1 compared to normal breast tissue (65, 239). Studies suggest that inhibition of DUSP1 

may be an effective therapeutic target against chemoresistance in BC patients. Increased 

expression of DUSP1 has been shown to correlate with decreased JNK activity (239). 

Overexpression of DUSP1 in BC cell lines treated with chemotherapeutic agents, which target 

the JNK pathway, protects against apoptosis. Conversely, genetic or chemical silencing of 

DUSP1 enhances sensitivity to chemotherapeutics agents (240), indicating that combination 

therapies that target this enzyme may be effective in the treatment of BC. 

DUSP3, DUSP4 and DUSP5 also negatively regulate ERK signaling. DUSP4 up-

regulation has been described in BC tumours (239). Deficiency of DUSP4has been identified 

as a mechanism of neoadjuvant drug chemoresistance in breast cancer tumours. DUSP4 

depletion is frequently found in chemotherapy refractory tumours which are associated with 

increased cell proliferation and basal-like BC status. Over-expression of DUSP4either in breast 

cancer cell lines or in BC xenograft mouse models increased chemotherapy-induced apoptosis, 

whereas depletion reduced chemosensitivity (241). Upregulation of DUSP3 and DUSP5 has 

been reported in PMA-treated MCF-7 and BKBR3 breast cancer cell lines. Activation of the 
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ERK1/2 pathway and accelerated growth arrest of BC cells, has been observed following 

silencing of either DUSP3 or DUSP5, and overexpression of either phosphatase prevents 

growth inhibition and cell migration (242).  

The novel phosphatase, VHZ (VH1-like (member Z)), encoded by the DUSP23 gene, is 

also associated with BC and has been identified in some invasive ductal and epithelia BC 

tumours. VHZ has been shown to localise to the centrosome and enhance G1/S cell cycle 

progession, suggesting that this enzyme may be a potential chemotherapeutic target (243).  

 All three CDC25 isoforms (CDC25A, CDC25B, CDC25C) can regulate G1/S and G2/M 

cell cycle transition (153). CDC25A overexpression is associated with poor survival in BC 

patients (244-246). In addition, CDC25A 263C/T and -51C/G polymorphisms gene 

polymorphisms are associated with BC incidence and metastatic potential have been identified 

in BC patients, suggesting that CDC25A gene may be candidate markers for earlier diagnosis 

and targets for BC therapy (247). Recent studies have demonstrated increased Fox1 activity 

following CDC25A-indcued dephosphorylation of CDK2. Inhibition of CDC25A inhibits 

metastases in BC mouse models, suggesting that this phosphatase may be a potential target 

for advanced stages of the disease (248).CDC25B is overexpressed in primary BC tumours 

(249), although expression levels do not always correlate with an aggressive phenotype (250). 

CDC25C splice variants have been found to shift or be elevated in BC cell lines, particularly in 

cell lines with multi-drug resistance or those treated with sub-lethal levels of genotoxic agents 

(251, 252), suggesting that CDC25C splicing may be an additional regulatory event involved in 

cellular response to DNA damage in BC cells. 

The oncogene SRC3, which is overexpressed or amplified in the majority of breast 

cancer tumours (253), is a target for PP1. PP1 can block proteasome-dependent turnover of 

SRC-3 by dephosphorylation at Ser-101 and Ser-103, resulting in the stabilisation of SRC-3 

(254). Increased expression of mutated PP2A at the active phosphatase site pY307 has been 

reported in HER2/neu BC tumours, which significantly correlated with disease progression 

(255). Loss of PP2A activity in HER2/neu positive BC cells resulted in apoptotic cell death 

mediated by p38 MAPK caspase-3 PARP activation (256), suggesting that this phosphatase 

may be a potential therapeutic target in BC.  

MCF7 cells carry an amplified PPM1D/Wip-1 gene and overexpress PPM1D 

phosphatase protein. Silencing PPM1D has been reported to enhance doxorubicin-induced 

apoptosis due to p53-mediated phosphorylation of Bax (257).  

Over-expression of the Eyes Absent (EYA) family of proteins, which are essential co-

activators of the Six1 family of homeobox transcription factors, have recently been reported to 

enhance the proliferartion, migration and invasiveness of BC cells (258). Silencing of EYA2 in 

MCF7 cells reverses the ability of Six1 to induce TGF-Β signaling and induce characteristics 

associated with epithelial-mesenchymal transition (259). High-throughput screening assays 

have recently identified a series of specific small molecule EYA2 phosphatase inhibitors that 
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may be useful for the development of future BC therapies (260).  

 

Sarcomas 

Sarcomas are probably even more heterogenous than all the aforementioned tumour 

types (261).  

PP2A has been identified in a protein array screen for interacting proteins with the 

Kaposi’s sarcoma-associated herpesvirus (KHSV) LANA protein, which functions in latently 

infected cells as an essential component of KSHV replication and dysregulated cell growth. 

The subunits PP2A and PP2B, but not the catalytic subunit PP2C, were found to associate 

with LANA, suggesting that PP2A activity may be dysregulated in this sarcoma (262).  

Alterations in PTEN expression have been described in several types of sarcoma. 

PTEN up-regulation has been described in 80% of tissue samples from Kaposi’s Sarcoma 

biopsies, with 58% having expressing phosphorylated PTEN (263). PTEN losses and 

mutations are also a frequent occurrence in the malignant smooth muscle neoplasm, 

leiomyosarcoma (264-266).  

SHP2 may be a promising therapeutic target for Kaposi’s sarcoma. Constitutive 

activation of the vGPC receptor, the Kaposi’s herpes sarcoma virus associated chemokine has 

been shown to result in the phosphorylation of SHP2 (267). The vGPCR contains a bona fide 

immunoreceptor tyrosine-based inhibitory motif (ITIM) that binds and constitutively activates 

Shp2 (268). Moreover, SHP2 is required for vGPCR activation of the MEK-ERK1/2 axis, the 

transcription factors AP-1 and NFκB and vGPCR-induced endothelial cell migration (267). 

PTPN13 is highly expressed in Ewing's Sarcoma family tumours (ESFT) cell lines and 

in patient tumours, with higher expression levels in metastatic compared to primary tumours. 

PTPN13 has been found to associate with the abberant transcription factor EWS-11, and is up-

regulated following overexpression of EWS-11(269). MK-STYX, which encodes for a MAP-

kinase phosphatase-like protein, is also constitutively expressed in EFST and may be a 

putative target for therapy in this class of tumours (270).  

 

 

Conclusions 

Phosphatases, like kinases, represent molecular switches that can turn on or off a variety of 

signaling pathways (Fig 1) resulting in abnormal cellular processes including uncontrolled 

proliferation, differentiation, angiogenesis and metastasis. Thus far, a large number of 

phosphatases has been associated with the development and progression of different types of 

cancer (Table 1). Further understanding and clarifying the involvement and role of 

phosphatases in signal transduction would be very helpful in developing new effective drugs to 

be used alone or in combination with other therapeutics for cancer treatment. 
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Table Alterations observed in phosphatases and resulting malignancies. 

 
Gene symbol Uniport KB Expression 

PTEN P60484 lung(213), esophageal(1-3), pancreatic(74), kidney(106), bladder(111), 

cervical(186, 187), ovarian(188), breast(231, 232), sarcoma(263), 

prostate(123-126) 

PTPN1 P18031 gastric(15, 271), colorectal(42), breast(219) 

PTPN2 P17706 lung(212) 

PTPN3 P26045 gastric(18), colorectal(27) 

PTPN4 P29074 gastric(18, 22) 

PTPN6 P29350 gastric(13), ovarian(202), prostate(158-161) 

PTPN9 P43378 breast(237) 

PTPN10 P28562 lung(216), gastric(30), colorectal(66, 272), bladder(115), ovarian(198), 

breast(239, 272) 

PTPN11 Q06124 gastric(9, 10), kidney(118), cervical(184), sarcoma(267), prostate(163) 

PTPN12 Q05209 lung(218), esophageal(6), breast(236) 

PTPN13 Q12923 lung(214), colorectal(27, 41), ovarian(199), breast(225), sarcoma(269) 

PTPN14 Q15678 colorectal(27) 

PTPN21 Q16825 bladder(103) 

PTPN23 Q9H3S7 colorectal(27) 

CDC25A P30304 esophageal(4), ovarian(201), breast(244-246), prostate(155) 

CDC25B P30305 lung(215), esophageal(4), kidney(99), ovarian(201), breast(249), 

prostate(154) 

CDC25C P30307 breast(251, 252), prostate(156) 

DUSP3 P51452 cervical(179), breast(242) 

DUSP4 Q13115 lung(217), breast(239, 241) 

DUSP5 Q16690 breast(242) 

DUSP6 Q16828 pancreatic(86-88), endometrial(171) 

DUSP23 Q9BVJ7 breast(243) 

PTPRA P18433 gastric(22, 26), colorectal(51, 53) 

PTPRB P23467 gastric(22) 

PTPRD P23468 colorectal(47, 49), kidney(104) 

PTPRF P10586 colorectal(27) 

PTPRH Q9HD43 gastric(22, 29), colorectal(29, 54, 55) 

PTPRJ Q12913 lung(212), gastric(22), colorectal(62, 67) 

PTPRG  colorectal(27) 

PTPRN Q16849 gastric(22) 

PTPRO Q16827 esophageal(7), colorectal(27) 

PTPRT O14522 gastric(28), colorectal(27, 46, 48) 

PTPRZ P23471 gastric(22) 

PTP4A3 O75365 gastric(31-36), colorectal(58, 59), ovarian(207, 208) 

LMW-PTP P24666 colorectal(56) 

PHLPP1 O60346 pancreatic(71) 

PPP1CA P62136  

bladder(102), cervical(174), prostate(146, 147) PPP1CB P62140 

PPP1CC P36873 

PPP2CA P67775 pancreatic(92, 93), cervical(182), endometrial(170), ovarian(194), 

breast(255), sarcoma(262), prostate(144-146) PPP2R2A P63151 

PPP2R1B P30154 

PPM1D O15297 ovarian(204), breast(257) 

ALPL P05186 kidney(97), bladder(97) 

CDKN3 Q16667 kidney(114) 

PSPH P78330 endometrial(173) 

PPAP2A O14494 ovarian(211) 

EYA2 O00167 breast(258) 

http://www.uniprot.org/uniprot/P60484
http://www.uniprot.org/uniprot/P18031
http://www.uniprot.org/uniprot/P17706
http://www.uniprot.org/uniprot/P26045
http://www.uniprot.org/uniprot/P29074
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