62 research outputs found

    The Genetics Journey: A Case Report of a Genetic Diagnosis Made 30 Years Later

    Full text link
    Mandibulofacial dysostosis with microcephaly (MFDM) is a rare autosomal dominant condition that was first described in 2006. The causative gene, EFTUD2, identified in 2012. We report on a family that initially presented to a pediatric genetics clinic in the 1980s for evaluation of multiple congenital anomalies. Re‐evaluation of one member thirty years later resulted in a phenotypic and molecularly confirmed diagnosis of MFDM. This family’s clinical histories and the novel EFTUD2 variant identified, c.1297_1298delAT (p.Met433Valfs*17), add to the literature about MFDM. This case presented several genetic counseling challenges and highlights that “the patient” can be multiple family members. We discuss testing considerations for an unknown disorder complicated by the time constraint of the patient’s daughter’s pregnancy and how the diagnosis changed previously provided recurrence risks. Of note, 1) the 1980s clinic visit letters provided critical information about affected family members and 2) the patient’s husband’s internet search of his wife’s clinical features also yielded the MFDM diagnosis, illustrating the power of the internet in the hands of patients. Ultimately, this case emphasizes the importance of re‐evaluation given advances in genetics and the value of a genetic diagnosis for both patient care and risk determination for family members.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147210/1/jgc40894.pd

    A multinational randomized, controlled, clinical trial of etoricoxib in the treatment of rheumatoid arthritis [ISRCTN25142273]

    Get PDF
    BACKGROUND: Etoricoxib is a highly selective COX-2 inhibitor which was evaluated for the treatment of rheumatoid arthritis (RA). METHODS: Double-blind, randomized, placebo and active comparator-controlled, 12-week study conducted at 67 sites in 28 countries. Eligible patients were chronic NSAID users who demonstrated a clinical worsening of arthritis upon withdrawal of prestudy NSAIDs. Patients received either placebo, etoricoxib 90 mg once daily, or naproxen 500 mg twice daily (2:2:1 allocation ratio). Primary efficacy measures included direct assessment of arthritis by counts of tender and swollen joints, and patient and investigator global assessments of disease activity. Key secondary measures included the Stanford Health Assessment Questionnaire, patient global assessment of pain, and the percentage of patients who achieved ACR20 responder criteria response (a composite of pain, inflammation, function, and global assessments). Tolerability was assessed by adverse events and routine laboratory evaluations. RESULTS: 1171 patients were screened, 891 patients were randomized (N = 357 for placebo, N = 353 for etoricoxib, and N = 181 for naproxen), and 687 completed 12 weeks of treatment (N = 242 for placebo, N = 294 for etoricoxib, and N = 151 for naproxen). Compared with patients receiving placebo, patients receiving etoricoxib and naproxen showed significant improvements in all efficacy endpoints (p<0.05). Treatment responses were similar between the etoricoxib and naproxen groups for all endpoints. The percentage of patients who achieved ACR20 responder criteria response was 41% in the placebo group, 59% in the etoricoxib group, and 58% in the naproxen group. Etoricoxib and naproxen were both generally well tolerated. CONCLUSIONS: In this study, etoricoxib 90 mg once daily was more effective than placebo and similar in efficacy to naproxen 500 mg twice daily for treating patients with RA over 12 weeks. Etoricoxib 90 mg was generally well tolerated in RA patients

    Analysis of RNA splicing defects in PITX2 mutants supports a gene dosage model of Axenfeld-Rieger syndrome

    Get PDF
    BACKGROUND: Axenfeld-Rieger syndrome (ARS) is associated with mutations in the PITX2 gene that encodes a homeobox transcription factor. Several intronic PITX2 mutations have been reported in Axenfeld-Rieger patients but their effects on gene expression have not been tested. METHODS: We present two new families with recurrent PITX2 intronic mutations and use PITX2c minigenes and transfected cells to address the hypothesis that intronic mutations effect RNA splicing. Three PITX2 mutations have been analyzed: a G>T mutation within the AG 3' splice site (ss) junction associated with exon 4 (IVS4-1G>T), a G>C mutation at position +5 of the 5' (ss) of exon 4 (IVS4+5G>C), and a previously reported A>G substitution at position -11 of 3'ss of exon 5 (IVS5-11A>G). RESULTS: Mutation IVS4+5G>C showed 71% retention of the intron between exons 4 and 5, and poorly expressed protein. Wild-type protein levels were proportionally expressed from correctly spliced mRNA. The G>T mutation within the exon 4 AG 3'ss junction shifted splicing exclusively to a new AG and resulted in a severely truncated, poorly expressed protein. Finally, the A>G substitution at position -11 of the 3'ss of exon 5 shifted splicing exclusively to a newly created upstream AG and resulted in generation of a protein with a truncated homeodomain. CONCLUSION: This is the first direct evidence to support aberrant RNA splicing as the mechanism underlying the disorder in some patients and suggests that the magnitude of the splicing defect may contribute to the variability of ARS phenotypes, in support of a gene dosage model of Axenfeld-Rieger syndrome

    Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study

    Get PDF
    Electrophysiological studies of the human heart face the fundamental challenge that experimental data can be acquired only from patients with underlying heart disease. Regarding human atria, there exist sizable gaps in the understanding of the functional role of cellular Ca2+ dynamics, which differ crucially from that of ventricular cells, in the modulation of excitation-contraction coupling. Accordingly, the objective of this study was to develop a mathematical model of the human atrial myocyte that, in addition to the sarcolemmal (SL) ion currents, accounts for the heterogeneity of intracellular Ca2+ dynamics emerging from a structurally detailed sarcoplasmic reticulum (SR). Based on the simulation results, our model convincingly reproduces the principal characteristics of Ca2+ dynamics: 1) the biphasic increment during the upstroke of the Ca2+ transient resulting from the delay between the peripheral and central SR Ca2+ release, and 2) the relative contribution of SL Ca2+ current and SR Ca2+ release to the Ca2+ transient. In line with experimental findings, the model also replicates the strong impact of intracellular Ca2+ dynamics on the shape of the action potential. The simulation results suggest that the peripheral SR Ca2+ release sites define the interface between Ca2+ and AP, whereas the central release sites are important for the fire-diffuse-fire propagation of Ca2+ diffusion. Furthermore, our analysis predicts that the modulation of the action potential duration due to increasing heart rate is largely mediated by changes in the intracellular Na+ concentration. Finally, the results indicate that the SR Ca2+ release is a strong modulator of AP duration and, consequently, myocyte refractoriness/excitability. We conclude that the developed model is robust and reproduces many fundamental aspects of the tight coupling between SL ion currents and intracellular Ca2+ signaling. Thus, the model provides a useful framework for future studies of excitation-contraction coupling in human atrial myocytes

    Validation of the Cognitive Assessment of Later Life Status (CALLS) instrument: a computerized telephonic measure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brief screening tests have been developed to measure cognitive performance and dementia, yet they measure limited cognitive domains and often lack construct validity. Neuropsychological assessments, while comprehensive, are too costly and time-consuming for epidemiological studies. This study's aim was to develop a psychometrically valid telephone administered test of cognitive function in aging.</p> <p>Methods</p> <p>Using a sequential hierarchical strategy, each stage of test development did not proceed until specified criteria were met. The 30 minute Cognitive Assessment of Later Life Status (CALLS) measure and a 2.5 hour in-person neuropsychological assessment were conducted with a randomly selected sample of 211 participants 65 years and older that included equivalent distributions of men and women from ethnically diverse populations.</p> <p>Results</p> <p>Overall Cronbach's coefficient alpha for the CALLS test was 0.81. A principal component analysis of the CALLS tests yielded five components. The CALLS total score was significantly correlated with four neuropsychological assessment components. Older age and having a high school education or less was significantly correlated with lower CALLS total scores. Females scored better overall than males. There were no score differences based on race.</p> <p>Conclusion</p> <p>The CALLS test is a valid measure that provides a unique opportunity to reliably and efficiently study cognitive function in large populations.</p

    Clinico-radiological features, molecular spectrum, and identification of prognostic factors in developmental and epileptic encephalopathy due to inosine triphosphate pyrophosphatase (ITPase) deficiency

    Get PDF
    Developmental and epileptic encephalopathy 35 (DEE 35) is a severe neurological condition caused by biallelic variants in ITPA, encoding inosine triphosphate pyrophosphatase, an essential enzyme in purine metabolism. We delineate the genotypic and phenotypic spectrum of DEE 35, analyzing possible predictors for adverse clinical outcomes. We investigated a cohort of 28 new patients and reviewed previously described cases, providing a comprehensive characterization of 40 subjects. Exome sequencing was performed to identify underlying ITPA pathogenic variants. Brain MRI (magnetic resonance imaging) scans were systematically analyzed to delineate the neuroradiological spectrum. Survival curves according to the Kaplan–Meier method and log-rank test were used to investigate outcome predictors in different subgroups of patients. We identified 18 distinct ITPA pathogenic variants, including 14 novel variants, and two deletions. All subjects showed profound developmental delay, microcephaly, and refractory epilepsy followed by neurodevelopmental regression. Brain MRI revision revealed a recurrent pattern of delayed myelination and restricted diffusion of early myelinating structures. Congenital microcephaly and cardiac involvement were statistically significant novel clinical predictors of adverse outcomes. We refined the molecular, clinical, and neuroradiological characterization of ITPase deficiency, and identified new clinical predictors which may have a potentially important impact on diagnosis, counseling, and follow-up of affected individuals

    Resistance of a Rodent Malaria Parasite to a Thymidylate Synthase Inhibitor Induces an Apoptotic Parasite Death and Imposes a Huge Cost of Fitness

    Get PDF
    BACKGROUND: The greatest impediment to effective malaria control is drug resistance in Plasmodium falciparum, and thus understanding how resistance impacts on the parasite's fitness and pathogenicity may aid in malaria control strategy. METHODOLOGY/PRINCIPAL FINDINGS: To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an inhibitor of thymidylate synthase, TS) pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for proliferation of parasites to 2% parasitaemia, relative to untreated wild-type controls) reduced from 8 days to 4, equalling the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of drug, resistant parasite maintained low growth rates (parasitaemia, 15.5%±2.9, 7 dpi) relative to the wild-type (45.6%±8.4), translating into resistance cost of fitness of 66.0%. The resistant parasite showed an apoptosis-like death, as confirmed by light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation. CONCLUSIONS/SIGNIFICANCE: The resistant parasite was less fit than the wild-type, which implies that in the absence of drug pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA resistance led to depleted dTTP pools, causing thymineless parasite death via apoptosis. This supports the tenet that unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular parasite. This finding is relevant in cancer therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be pharmacologically modulated, the parasite's apoptotic machinery may be exploited as a novel drug target in malaria and other protozoan diseases of medical importance

    Barriers and facilitators to Hepatitis C (HCV) Screening and Treatment – A Prisoners’ Perspective

    Get PDF
    Background: Hepatitis C Virus (HCV) infection is a global epidemic with an estimated 71 million people infected worldwide. People who inject drugs (PWID) are over represented in prison populations globally and have higher levels of HCV infection than the general population. Despite increased access to primary health care while in prison, many HCV infected prisoners do not engage with screening or treatment. With recent advances in treatment regimes, HCV in now a curable and preventable disease and prisons provide an ideal opportunity to engage this hard to reach population. Aim: To identify barriers and enablers to HCV screening and treatment in prisons Methods: A qualitative study of four prisoner focus groups (n=46) conducted at two prison settings in Dublin, Ireland. Results: The following barriers to HCV screening and treatment were identified, lack of knowledge, concerns regarding confidentiality and stigma experienced and inconsistent and delayed access to prison health services. Enablers identified included; access to health care, opt-out screening at committal, peer support, and stability of prison life which removed many of the competing priorities associated with life on the outside. Unique blocks and enablers to HCV treatment reported were, fear of treatment and having a liver biopsy, the requirement to go to hospital and in-reach hepatology services and fibroscaning. Conclusion; The many barriers and enablers to HCV screening and treatment reported by Irish prisoners will inform both national and international public health HCV elimination strategies. Incarceration provides a unique opportunity to upscale HCV treatment and linkage to the community would support effectiveness
    corecore