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Abstract We propose general analytical approach for the

description of size effect influence on polarization and

dielectric susceptibility in ferroelectric nanosystems based

on the two-parametric direct variational method and Lan-

dau–Ginzburg–Devonshire phenomenology. The essence

of the approach is to solve Euler–Largange boundary

problem for polarization distribution exactly in paraelectric

phase without ferroelectric nonlinearity and then to use the

linearized solution for derivation of the approximate ana-

lytical expression for spontaneous polarization distribution

in ferroelectric phase with the average polarization and

characteristic spatial scale as variational parameters. Cor-

responding polarization distributions calculated within the

approach in thin ferroelectric films, nanowires and nano-

tubes were compared with the available exact solution of

Landau–Ginzburg–Devonshire equation or approximate

results obtained earlier from the one parametric solution.

Perfect agreement between the exact solution and obtained

approximate ones is demonstrated. The realization of the

proposed scheme of the two-parametric direct variational

method seems even simpler than the one-parametric

scheme based on the Landau–Ginzburg–Devonshire free

energy expansion with renormalized coefficients, while the

validity range of two-parametric solution is much wider

and the accuracy is higher. So, obtained analytical results

have methodological importance for calculation of the

phase diagram size effects, polarization distribution, all

related polar, dielectric, piezoelectric and pyroelectric

properties of single-domain ferroelectric nanoparticles and

thin films. The proposed method is applicable to different

ferroic nanosystems.

Introduction

Ferroelectric nanosystems open the way to obtain a variety

of new unique electro-mechanical, electronic and dielectric

properties, a lot of which are useful for applications, such

as ferroelectric memories, the ability to store and release

energy in well-regulated manners, making them very useful

for sensors and actuators, compact electronics, pyrosensors

and thermal imaging [1–3].

The substantial progress in synthesis of various ferro-

electrics nanosystems, like epitaxial films [4], nanoparticles

with controllable sizes [5], arrays of tubes and rods [6–9], the

local characterization of their polar properties [10–12] and

domain structure [13], triggered the renovation of interest to

ferroic nanosystems theoretical description. It is worth to

note the enormous achievements of both the phenomeno-

logical [14] and microscopic [15] theories, their recent

advances in different fields like the description of nanorods

[16, 17], size effects in thin films [18, 19], ferroelectric

nanoparticles [20–22]; flexoelectric effect influence on the

intrinsic properties [23, 24] and response [25–27] of the

nanosystems; the developed analytical model accounting for

depolarization field as well as the formation of misfit dislo-

cations [28–30]. However, despite this progress, the phe-

nomenological theory lacks a general method, suitable for

the solution of vast variety of different problems of ferroics

description.
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The possibility to govern the appearance of phase

transitions at any arbitrary temperature has been dem-

onstrated in nanosized materials due to the so-called

size-driven phase transition. Such transitions were

observed in many solids, including ferroelectric, ferro-

magnetic and ferroelastic ones [31]. For instance, it is

generally accepted, that the ferroelectric properties dis-

appear when the particle size decreases below the critical

one [1, 32, 33]. Actually, it is well known that depo-

larization electric fields exist in the majority of confined

ferroelectric systems [34] and causes the size-induced

ferroelectricity disappearance in thin films and spherical

particles [35, 36].

The phenomenological description of ferroelectricity in

spatially confined systems based on the one-parametric

direct variational method applied to the Landau–Ginzburg–

Devonshire (LGD) free energy functional has been recently

proposed [37–39]. For instance, we proved that the reason

of the polar properties enhancement and conservation in

ferroelectric nanorods is the stress coupled with polariza-

tion via electrostriction effect under the strong decrease of

depolarization field with particle length increase. Briefly,

the scheme based on one-parametric direct variational

method is the following.

• Firstly the analytical solution of the linearized Euler–

Lagrange boundary problem obtained from the LGD

free energy functional minimization is derived. This

solution corresponds to the polarization distribution in

the paraelectric phase of the system, where the

nonlinearity can be neglected in the weak external

electric field. The average paraelectric susceptibility

diverges in the point where the paraelectric phase loses

its stability, so corresponding expression for the

transition temperature Tcr could be found directly from

the condition of zero inverse susceptibility.

• In order to study the system behavior in ferroelectric

phase, the coordinate-dependent part of the paraelectric

solution is chosen as the trial one with its amplitude as

variational parameter. After the integration of LGD free

energy functional over the particle volume with the trial

function we obtained the renormalized free energy with

expansion coefficients depending on temperature T and

the particle sizes. The polarization amplitude can be

determined from the algebraic equation obtained after

the minimization of the renormalized free energy. If the

analytical (exact or approximate) integration is possible

it leads to the corresponding analytical expressions for

renormalized coefficients size dependences.

The main advantage of the one-parametric direct vari-

ational method is the principal possibility to obtain ana-

lytical results, while the typical disadvantage is lengthy

integration of the terms in LGD functional in order to

obtain renormalized coefficients.

In the paper we propose general analytical approach for

the description of size effect of polarization and dielectric

susceptibility in ferroelectric nanosystems based on self-

consistent method of successive approximations. Here the

first step is to find the deviation of polarization distribution

from its average value. The amplitude and spatial scale of

distribution appear to be dependent on average polarization

due to the system nonlinearity. Next step is to look for the

average value of polarization from the full distribution

allowing for deviation in a self-consistent manner. Math-

ematically this method is equivalent to the two-parametric

direct variational method with the average polarization and

the distribution length scale as variational parameters.

However the proposed scheme is free from the complex

integration of the LGD free energy expansion coefficients,

instead we solved the one transcendental equation for

average polarization determination. Corresponding polari-

zation distributions calculated within the approach in thin

ferroelectric films, nanowires and nanotubes were com-

pared with the available exact solution of LGD-equation or

approximate results obtained earlier from the one-para-

metric solution applied to the LGD free energy.

General approach

For perovskite (cubic) symmetry the free energy expansion

on the powers of polarization P3 and strain uij has the form:

F ¼
Z

V

d3r
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1ðTÞ
2

P2
3 þ
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11

4
P4

3 þ
a111

6
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3
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4
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Coefficient au
1ðTÞ explicitly depends on temperature T.

Coefficients aS, a111 are supposed to be temperature inde-

pendent, positive constant g determines magnitude of the

gradient energy. Ed
3 is the depolarization field (if any).

Tensor cijkl is positively defined, also a111 [ 0. Free energy

(1) is minimal when the system temperature and volume

are fixed (i.e. strain components are defined at the nano-

structure boundaries).

Below we consider the case of 1D-polarization distri-

butions corresponding to mono-domain systems. The

minimization of the free energy on polarization and strain

components gives the following equations of state
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au
1 � qij33uij

� �
P3 þ au

11P3
3 þ a111P5

3 � g
o2P3

oxkoxk
¼ E0 þ Ed

3 ;

ð2aÞ

�qij33P2
3 þ cijklukl ¼ rij: ð2bÞ

These equations should be supplemented with Maxwell

equations for electrostatic electric field and compatibility

conditions for strain and equilibrium conditions for stress

components [40].

In some cases elastic sub-problem could be solved at

fixed polarization (see details in Appendix 1). Results are

summarized in Table 1 for mechanically free system

rij ¼ 0
� �

; clamped system (uij = 0) and ‘‘mixed’’ case

corresponding to thin epitaxial films on thick and/or rigid

substrate [41]. In the latter case um is the misfit strain in

plane of the system due to the mechanical incompatibility

between the film and substrate.

Shear strain components are zero in these cases, u12 ¼
u13 ¼ u23 ¼ 0: It should be noted, that the solutions listed

in Table 1 are valid only for the polarization distributions,

specified in the second column of the table. In the case of

arbitrary distribution of polarization either compatibility or

equilibrium conditions could be not satisfied for the elastic

fields from Table 1. For instance, in the case of one-

dimensional distribution of polarization, P3(x1), in the

elastically free system components u22, u33 from second

row should be replaced with their mean values. One of the

consequences of such distribution is the stress localization

in the vicinity of domain walls (see e.g. papers of Cao and

Cross [42] and Zhirnov [43]). It should be noted, that the

influence of the misfit dislocation on the misfit strain um

relaxation could be taken into account by the renormal-

ization of um (see e.g. Speck and Pompe paper [44]).

After substitution of to the strain field into equation of

state (2a) one could get the renormalized expansion coef-

ficients, presented in Table 2.

Polarization distribution in ferroelectric films

For the case of ferroelectric film with thickness L, occu-

pying the region -L/2 \ x B L/2, the depolarization field

Ed
3 is absent, if the polarization vector P3(x) is laying in the

film plane. Taking into account the renormalization listed

in the Table 2, one could rewrite Eq. 2a as

aP3 þ bP3
3 � g o2P3

ox2 ¼ E0

P3 � k dP3

dx

� ���
x¼�L=2

¼ 0; k ¼ g
aS
;

(
ð3Þ

Here we introduced extrapolation length k in boundary

condition. Below we suppose standard dependence on

temperature, a ¼ aT T � TCð Þ; though critical temperature

TC could be different from bulk value due to the influence

of misfit strain (see Table 2).

In the absence of electric field Eq. 3 has an exact

solution (see e.g. Refs. [45–47]):

P3 xð Þ ¼ Pb

ffiffiffiffiffiffiffiffiffiffiffiffi
2m

1þ m

r
sn

x

Rc

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ m
p þ K mð Þ

����m
� �

ð4Þ

Here Pb ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�a=b

p
and Rc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g= �að Þ

p
are the

spontaneous polarization and the correlation radius of

bulk material at T B Tc, sn(u|m) is the elliptical sine

function [48]. Constant m should be determined from

the boundary conditions, which gives the following

equation:

L ¼ 2Rc

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ m
p

K mð Þ � F arcsin uðm; kÞð Þ;mð Þð Þ ð5aÞ
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vuut
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Here K(m) and F(u,m) are complete and incomplete elliptic

integrals of the first kind respectively. Distributions of

spontaneous polarization in films of different thickness for

different values of extrapolation length are shown in

Fig. 1a, b, where R0
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g= aT TCð Þ

p
is the bulk correlation

radius at T = 0.

At m ? 0 polarization (4) disappears, which means

transition from ferroelectric to paraelectric phase. In this

limit relation (5a, 5b) is reduced to the condition of phase

transition in thin films:

tan
L

2Rc

� �
¼ Rc

k
: ð6aÞ

Table 1 Strain field in

ferroelectric systems
Polarization

distribution

Non-trivial strain components

u11 u22 u33

Free system P3 = const
�c12q11þc11q12ð ÞP2

3

c11þ2c12ð Þ c11�c12ð Þ
c11þc12ð Þq11�2c12q12ð ÞP2

3

c11þ2c12ð Þ c11�c12ð Þ
Clamped system P3 = const 0 0 0

Films with out of plane P P3(x3) um um
q11

c11
P2

3 � 2c12

c11
um

Films with in plane P P3(x1) q12

c11
P2

3 � 2c12

c11
um um um
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At fixed temperature Eq. 6a determines the critical

thickness Lcr ¼ 2Rc arctan Rc=kð Þ of ferroelectric films,

i.e. in the film with thickness L \ Lcr ferroelectric phase

is unstable. At fixed thickness Eq. 6a determines the

critical temperature of transition (see Fig. 1c). The

following approximation for the transition temperature

were found (see Appendix 3):

TCL � TC �
2p2g=aT

p2Lkþ 2L2
ð6bÞ

Note that relationship (6b) is exact in two limits of low and

high extrapolation length values. The comparison of exact

(6a) and approximate (6b) expressions for critical tempera-

ture is shown in Fig. 1c (see solid and dotted curves

respectively). It is seen that approximation (6b) is very close

to exact dependence.

The exact solution (4) involves higher transcendental

function and is limited to the cases of ferroelectric phase

and zero external electric field. The solutions for the first

derivatives (susceptibility and pyroelectric coefficient)

are also available [47], but they have even more

sophisticated structure. These lead us to attempt to find

the approximate solution of Eq. 3 in terms of elementary

functions, valid in both paraelectric and ferroelectric

phase.

Let us look for the solution in the form P3 xð Þ ¼
Pþ p xð Þ; where P ¼

R L=2

�L=2
P3 xð Þdx

.
L is the averaged

polarization, p is the deviation, regarded small in

Table 2 Free energy expansion

coefficients renormalization
a b

Free system au
1 au

11 � 4
q11�q12ð Þ2

3 c11�c12ð Þ � 2
q11þ2q12ð Þ2

3 c11þ2c12ð Þ
Clamped system au

1 au
11

Films with out of plane P au
1 � 2q12um þ q11

2c12

c11
um au

11 �
q2

11

c11

Films with in plane P au
1 � q11 þ q12ð Þum þ q12

2c12

c11
um au

11 �
q2

12
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Fig. 1 a, b Polarization

distribution inside the films with

extrapolation length k/Rc = 0

(a) and 1.5 (b). Solid curves
were plotted from exact

distribution (4), dotted curves

were plotted from approximate

definitions (8–9). Film thickness

values are L/Rc = 3.5, 5, 10, 20

(curves 1–4 in plot (a)) and

L/Rc = 2.5, 5, 10, 20 (curves

1–4 in plot (b)). c Critical

temperature dependence on the

inverse film thickness for

k/Rc
0 = 0, 1, 2, 3 (curves 1–4).

Solid curves were plotted from

Eq. 4, dotted curves were

plotted from approximate

definitions (10–11). d Average

polarization dependence on the

inverse film thickness for

k/Rc = 0, 1.5, 3 (curves 1–3).

Solid curves correspond to exact

expressions, dashed and dotted
curves were plotted from

approximate definitions (9) and

(10) correspondingly
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ferroelectric phase: p xð Þj j � P
�� ��: So, linearized problem

(3) acquires the form:

aþ 3bP
2

� �
p� g o2p

ox2 ¼ E0 � aPþ bP
3

� �
;

p� k dp
dx

� ���
x¼�L=2

¼ �P

8<
: ð7Þ

The solution of the linear problem (7) is the following:

P3ðxÞ ¼
E0 þ 2bP

3

aþ 3bP
2

 !
f x; L;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

aþ 3bP
2

s0
@

1
A; ð8aÞ

f x;L;R0ð Þ¼1� cosh x=R0ð Þ
cosh L=2R0ð Þþ k=R0ð Þsinh L=2R0ð Þ;

R0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g

aþ3bP
2

s
: ð8bÞ

Here R0 is the characteristic length scale that should be

determined self-consistently. The average polarization

should be determined self-consistently from the spatial

averaging Eqs. 8a and 8b as

P ¼ E0 þ 2bP
3

aþ 3bP
2

 !
f L;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

aþ 3bP
2

s0
@

1
A: ð9aÞ

f L;R0ð Þ ¼ 1� sinh L= 2R0ð Þð Þ2R0=L

cosh L= 2R0ð Þð Þ þ k=R0ð Þ sinh L= 2R0ð Þð Þ
ð9bÞ

Allowing for Eqs. 9a and 8a could be rewritten as

P3ðxÞ ¼ Pf x;L;R0ð Þ
	

f L;R0ð Þ:
In fact, Eq. 9 is the transcendental equation for the

average polarization determination. But in contrast to Eq. 5

it involves only elementary functions. Approximation for

average polarization at E0 = 0 could be obtained from

the expression of bulk spontaneous polarization Pb ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT TC � Tð Þ=b

p
by substitution of TC with TCL:

P �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT TCL � Tð Þ

b

s
ð10Þ

Approximate distributions of polarization (8a, 8b) are

shown in Fig. 1a, b in comparison with exact expressions

(4). It is seen that even for the most ‘‘problematic’’ case

k = 0 corresponding to the maximal deviation of polari-

zation from the average value the approximate profiles (8a,

8b) give quantitative description of exact ones. For the

average polarization dependence on the film thickness (see

Fig. 1d) the approximate dependences are even closer to

exact ones for the most values of extrapolation length.

The proposed approach to the confined ferroelectric sys-

tem description is analogous to direct variational method

with two variational parameters, namely the average polar-

ization P and the characteristic length scale R0. The depen-

dence of the latter on the average polarization reflects

changes of the polarization distribution when approaching

the phase transition point, which is the feature, present in the

exact solution (4) via parameter m, changing from 0 to 1.

If the polarization is pointed perpendicular to the film

surface and the depolarization field is present in the system

[49, 50] the proposed method gives essentially the same

results as the one parametric variational method did (see

Appendix 2), since in this case the characteristic length

scale appeared to be practically independent on tempera-

ture and film thickness and is determined solely by the

depolarization field screening [47].

The advantages of the developed approximate method

and its high accuracy encourage one to apply this method

for other ferroic system of different geometry where exact

solutions are not available.

Polarization distribution in ferroelectric nanowires

In contrast to the thin films on the substrate, the elastic field

of the spontaneous strain uij * P3
2 inside cylindrical ferro-

electric nanoparticles is rather complicated because of the

polarization distribution, which leads to the appearance of

non-local terms, involving the term with polarization mean

square value P3P2
3 in the polarization equation of state [51].

The proposed method allows taking into account these terms

by involving additional parameter P2
3; which makes the

consideration very cumbersome. At the same time, one

could get the quantitatively correct picture of the size effect

in ferroelectric nanowires neglecting the distinction of strain

field from the one of bulk system (see Table 1). Here we

suggest using renormalized expansion coefficients for free

system from Table 2 as an approximation for real system.

Considering long cylindrical nanoparticles (nanowires,

long nanorods etc.) one could neglect the effects of depo-

larization field and faces of particles. Under such condi-

tions, equation of state (2a) should be rewritten as:

aP3 � g o2

oq2 þ 1
q

o
oq

� �
P3 þ bP3

3 ¼ E0;

P3 þ k dP3

dq

� ����
q¼R
¼ 0; k ¼ g

aS
;

P3 q ¼ 0ð Þj j\1

8>><
>>:

ð11Þ

Let us find the solution valid in both paraelectric and

ferroelectric phase in the form P3 qð Þ ¼ Pþ p qð Þ; where

P ¼ 2
R2

RR
0

P3 qð Þqdq is the averaged polarization, p is the

deviation, regarded small in ferroelectric phase: p qð Þj j �
P
�� ��: So, linearized problem (11) acquires the form:

aþ3bP
2

� �
p�g o2

oq2þ 1
q

o
oq

� �
p¼E0� aPþbP

3
� �

;

pþkop
oq

� ����
q¼R
¼�P; p q¼0ð Þj j\1

8><
>: ð12Þ
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The solution of the problem has the form:

P3ðqÞ ¼
E0 þ 2bP

3

aþ 3bP
2

 !
c q;R;R0ð Þ; ð13aÞ

c q;R;R0ð Þ ¼ 1� I0 q=R0ð Þ
I0 R=R0ð Þ þ k=R0ð ÞI1 R=R0ð Þ : ð13bÞ

Here R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
.

aþ 3bP
2

� �r
;I0 xð Þ and I1 xð Þ are modified

Bessel functions of the zero and first orders respectively1.

The average polarization should be determined self-

consistently from the spatial averaging in Eq. 13 as

P ¼ E0 þ 2bP
3

aþ 3bP
2

 !
c R;R0ð Þ: ð14aÞ

c R;R0ð Þ ¼ 1� 2I1 R=R0ð Þ R0=Rð Þ
I0 R=R0ð Þ þ k=R0ð ÞI1 R=R0ð Þ ð14bÞ

Allowing for Eqs. 14a and 13a could be rewritten as:

P3ðqÞ ¼ P E0ð Þ
c q;R;R0ð Þ
c R;R0ð Þ ð15Þ

Using Eqs. (13a, 13b)–(14a, 14b), one could calculate

dielectric susceptibility vðqÞ ¼ oP3ðqÞ=oE0 and its mean

value v ¼ oP
	
oE0: Using the relation oR0

	
oP ¼

�R03bP
.

aþ 3bP
2

� �
; differentiation of Eq. 14a gives:

v ¼ c R;R0ð Þ
aþ 3bP

2

� 1�
6bP aPþ bP

3 � E0

� �

aþ 3bP
2

� �2
c R;R0ð Þ

0
B@

þ
3bP E0 þ 2bP

3
� �

aþ 3bP
2

� �2

oc R;R0ð Þ
oR0

R0

1
CA
�1

ð16aÞ

Here the derivative has the view:

oc R;R0ð Þ
oR0

R0

¼
2R2

0 RI0 R=R0ð Þ2� Rþ2kð ÞI1 R=R0ð Þ2�2R0I0 R=R0ð ÞI1 R=R0ð Þ
� �

R R0I0 R=R0ð ÞþkI1 R=R0ð Þð Þ2
:

ð16bÞ

Similarly to (16a, 16b), one could obtain from Eqs. 13a and

13b the susceptibility distribution:

vðqÞ ¼ 1

aþ 3bP
2
þ

6bP aPþ bP
3 � E0

� �

aþ 3bP
2

� �2

0
B@

1
CAc q;R;R0ð Þ

� v
3bP E0 þ 2bP

3
� �

aþ 3bP
2

� �2

oc q;R;R0ð Þ
oR0

R0 ð17aÞ

Here the derivative has the view:

oc q;R;R0ð Þ
oR0

R0 ¼
q I1 q=R0ð Þ

Rc I0 R=R0ð Þ þ k I1 R=R0ð Þ
� R I0 q=R0ð Þ k I0 R=R0ð Þ þ R0 I1 R=R0ð Þð Þ

R0 I0 R=R0ð Þ þ k I1 R=R0ð Þð Þ2

ð17bÞ

The results of susceptibility and polarization distributions

calculations are presented in Fig. 2 for different values of

extrapolation length and nanowires radius. Dependence of

extrapolation length on the rod radius proposed in Ref. [32]

was ignored for the sake of simplicity.

Susceptibility is renormalized on the value vb ¼
�1=2a1ðTÞ; which is dielectric susceptibility of the bulk

material. The drop of polarization and the increase of

susceptibility in the vicinity of size—driven phase transi-

tion is obvious. Also the maximum of susceptibility near

the surface of thick wires could be related to the decrease

of polarization in this region. The similar effect was pre-

dicted for the ferroelectric films with in-plane polarization

(i.e. without depolarization field) on the basis of exact

solution [47].

In paraelectric phase higher order power terms of P could

be neglected since P E0 ! 0ð Þ�E0; so the transcendental

Eq. 14a for the determination of P reduces to definition of

susceptibility, P ¼ E0c R;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=aðTÞ

p� �	
a: Thus critical

point of transition between paraelectric and ferroelectric

phases corresponds to the zero denominator in Eq. 14b. At

aðTÞ\0 this condition can be rewritten in the form:

J0 R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aðTCRÞ

g

s !
� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aðTCRÞ

g

s
J1 R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aðTCRÞ

g

s !
¼ 0:

ð18aÞ

Here Jn xð Þ is the Bessel function of the n-th order.

Pade approximations of the solution of Eq. 18a for

transition temperature TCR could be written as [17]:

TCR �
TC � 2

aT

g

R kþ2R2=k2
01

� �
; k[ 0;

TC � 2
aT

g 2k�R
2R k2

� �
; k\0:

8><
>: ð18bÞ

where k01 ¼ 2:408. . . is the smallest positive root of

equation J0(k) = 0.

1 The linearized solution for the polarization distribution in para-
electric phase and the averaged polarization was derived earlier in

Refs. [32, 35] as P3ðqÞ ¼ E0

a 1� J0 q=Rcð Þ
J0 R=Rcð Þ� k=Rcð ÞJ1 R=Rcð Þ

� �
; where Rc ¼ffiffiffiffiffiffiffiffiffiffiffi

�g=a
p

: However the solution is invalid in ferroelectric phase, since

the scale Rc is different from R0 introduced in Eq. 4.
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The comparison of the exact and approximate depen-

dences is shown in Fig. 3a.

Similarly to the case of ferroelectric films with in plane

polarization, the approximation for average spontaneous

polarization at E0 = 0 could be obtained from the

expression of bulk spontaneous polarization Pb ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT TC � Tð Þ=b

p
by substitution of TC with TCR, as it was

widely used before [17, 37, 39]:

P �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT TCR � Tð Þ

b

s
ð19Þ

The comparison of the different approximate expressions

for the average polarization dependence on the rod radius is

shown in Fig. 3b. It is seen that rough approximation (19)

almost coincides with more rigorous expression for high

values of extrapolation length.

It is obvious, that the results for nanorods could be

generalized to the case of nanotubes of arbitrary sizes in

straightforward way (see Appendix 4). The detailed anal-

ysis of the results for ferroelectric nanotubes will be pre-

sented elsewhere.

Summary

We propose general approach for the description of size

effect of polarization distribution and transition tempera-

ture in ferroelectric nanosystems based on the two-para-

metric direct variational method and LGD phenomenology.

The scheme of the method consists of three steps.

I. To obtain the Euler–Lagrange boundary problem for

polarization distribution from the minimization of the

LGD free energy functional.

II. To linearize the Euler–Lagrange boundary problem

near the average value of polarization and to obtain

the equation for deviation of polarization from its

average value. The solution of this equation could be

found by using standard methods and gives the

polarization distribution with amplitude and length

scale dependent on the average polarization.

III. To find the average polarization self-consistently by

the averaging of the Euler–Lagrange equation solu-

tion, obtained on the step II and dependent on the

average polarization.
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Allowing for the step III, the two-parametric scheme of

the direct variational method is free from the complex inte-

gration in order to obtain the LGD free energy with renor-

malized expansion coefficients; instead we solved the only

one transcendental equation for average polarization deter-

mination. Thus, the realization of the two-parametric scheme

is simpler than the one-parametric scheme based on the LGD

free energy expansion with renormalized coefficients, while

we proved that the validity range of two-parametric solution

is much wider and the accuracy is higher.

Obtained analytical results have priory methodological

importance for calculation of the phase diagram size

effects, polarization distribution, polar, dielectric, piezo-

electric and pyroelectric properties of single-domain fer-

roelectric nanoparticles and thin films. The method is also

applicable to different ferroic nanosystems.

Appendix 1: elastic fields

The equation of state (2b) should be supplemented with

compatibility conditions for strain

eiklejmno
2uln

	
oxkoxm ¼ 0 ð20Þ

and equilibrium conditions for stress components

orij

	
oxi ¼ 0: ð21Þ

Also boundary conditions should be specified.

For mechanically clamped system (ukl = 0) internal

elastic stress could be obtained from Eq. 2b as rij ¼
�qij33P2

3: It is stable only for homogeneous distribution of

polarization, otherwise equilibrium condition (21) is not

satisfied.

For mechanically free system rij ¼ 0
� �

nontrivial

spontaneous strain components could be found from Eq. 2b

as

u11 ¼ u22 ¼
q11 þ 2q12

c11 þ 2c12

� q11 � q12

c11 � c12

� �
P2

3

3
;

u33 ¼
q11 þ 2q12

c11 þ 2c12

þ 2
q11 � q12

c11 � c12

� �
P2

3

3
: ð22aÞ

Substitution of strain (22a) into Eq. 2a gives the following

renormalization of coefficient before P3
3 term:

ar
11 ¼ au

11 � 4
q11 � q12ð Þ2

3 c11 � c12ð Þ �
q11 þ 2q12ð Þ2

3 c11 þ 2c12ð Þ ; ð22bÞ

while all the other coefficients remained the same.

The elastic fields in epitaxial ferroelectric film on thick

and/or rigid substrate are found by Pertsev et al. [41]. In

this case in plane components of strain should be fixed to

the values, determined by the misfit, while normal com-

ponents of stress should be zero.

For the polarization normal to film surface at x3 = const

the elastic fields are:

r12 ¼ r13 ¼ r23 ¼ r33 ¼ 0;

r11 ¼ r22 ¼
q11c12

c11

� q12

� �
P2

3 þ
um

s11 þ s12

;
ð23aÞ

u12 ¼ u13 ¼ u23 ¼ 0; u11 ¼ u22 ¼ um;

u33 ¼
q11

c11

P2
3 �

2c12

c11

um

ð23bÞ

Here um is the misfit strain in plane of the system due to the

mechanical incompatibility between the film and substrate.

Here we denote s11 þ s12ð Þ�1� c11 þ c12 � 2c2
12

	
c11:

Due to the strain (23b) expansion coefficients in (1) and

(2a) should be renormalized as

am
1 ¼ au

1 � 2q12um þ q11

2c12

c11

um; am
11 ¼ au

11 �
q2

11

c11

ð23cÞ

For the in-plane polarization (film plane x1 = const) the

elastic fields are:

r22 ¼ �
q12c11 � q11c12

c11

P2
3 þ

um

s11 þ s12

;

r33 ¼ �
q11c11 � q12c12

c11

P2
3 þ

um

s11 þ s12

;
ð24aÞ

u12 ¼ u13 ¼ u23 ¼ 0; u33 ¼ u22 ¼ um;

u11 ¼
q12

c11

P2
3 �

2c12

c11

um

ð24bÞ

and the expansion coefficients renormalization

am
1 ¼ au

1 � q11 þ q12ð Þum þ q12

2c12

c11

um; am
11 ¼ au

11 �
q2

12

c11

ð24cÞ

It should be noted, that strain fields (23b) and (24b) satis-

fies compatibility conditions (20) for the case of one-

dimensional distribution of polarization in the form P3(x3)

and P3(x1) respectively, since conditions (20) for one-

dimensional distributions is reduced to more simple forms,

q2u11/qx3
2 = q2u22/qx3

2 = 0 and q2u33/qx1
2 = q2u22/qx1

2 = 0

respectively. The nontrivial stress components for different

boundary conditions are summarized in Table 3.

Table 3 Stress field in ferroelectric systems

r11 r22 r33

Free system 0 0 0

Clamped

system

�q12P2
3 �q12P2

3 �q11P2
3

Films with

out of

plane P

q11c12

c11
� q12

� �
P2

3 þ um

s11þs12
0

Films with

in plane P
0 q11c12�q12c11

c11
P2

3 þ um

s11þs12

q12c12�q11c11

c11
P2

3 þ um

s11þs12
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Appendix 2: the case of out of plane polarization

with depolarization field present

Let us consider the case of film with out of plane polari-

zation. The equation of state is

aP3 þ bP3
3 � g

o2P3

oz2
¼ E0 þ Ed

3 ; ð25Þ

with boundary conditions

P3 � k
dP3

dz

� �����
z¼�L=2

¼ 0; ð26Þ

For the considered 1D distribution of polarization the

depolarization field can be written in the form

Ed
3 zð Þ ¼ �P3 zð Þ þ P

e0eb
� P

e0eb

H1

	
eg1 þ H2

	
eg2

H1

	
eg1 þ H2

	
eg2 þ L=eb

ð27Þ

Here eb is the background permittivity of ferroelectric (see

e.g. Refs. [1, 50, 52]), P ¼
R L=2

�L=2
P3 zð Þdz

.
L is the averaged

polarization, egi and Hi for i = 1, 2 are respectively per-

mittivity and thickness of dead layers between the film and

its electrodes. It should be noted that similar expression

was presented by Tilley [35] for the case of semiconductor

electrodes with finite thickness, in this case Hi should be

considered as the values of screening radius and egi as the

permittivity of electrodes.

The first term in Eq. 27 is similar to the expression for

depolarization field obtained by Kretschmer and Binder [49]

for the case of ideal electrodes and absence of background

polarizability eb
33 � 1

� �
and is determined by the polariza-

tion distribution. The second term in Eq. 27 is related to the

non-ideal screening due to either dead layer or finite

screening length. It should be noted, that only the latter term

in Eq. 27 was considered by Tagantsev et al. [52].

Again, let us look for the solution of Eq. 25 in the form

P3 zð Þ ¼ Pþ p zð Þ with the deviation p regarded small,

p zð Þj j � P
�� ��; and p zð Þ � 0: So, linearized problem (25)–

(26) acquires the form:

aþ 3bP
2 þ 1

e0eb

� �
p� g o2p

oz2 ¼ E0 � aPþ bP
3

� �
� P

e0eb
N;

p� k dp
dz

� ����
z¼�L=2

¼ �P ð28Þ

8><
>:
Here we introduced the following designation N �

H1=eg1þH2=eg2

H1=eg1þH2=eg2þL=eb
:

The solution of the linear problem (28) has the form:

P3ðzÞ¼
e0eb E0þ2bP

3
� �

þP 1�Nð Þ

e0eb aþ3bP
2

� �
þ1

f z;L;Rd P
� �� �

; ð29aÞ

where the space distribution is governed by:

f z; L;Rdð Þ ¼ 1� cosh z=Rdð Þ
cosh L=2Rdð Þ þ k=Rdð Þ sinh L=2Rdð Þ ;

Rd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e0ebg

e0eb aþ 3bP
2

� �
þ 1

s
: ð29bÞ

The average polarization P should be determined self-

consistently from the spatial averaging of Eqs. 29a and 29b

that leads to the following equation

P ¼
e0eb E0 þ 2bP

3
� �

þ P 1� Nð Þ

e0eb aþ 3bP
2

� �
þ 1

f L;Rdð Þ; ð30aÞ

f L;Rdð Þ ¼ 1� sinh L= 2Rdð Þð Þ2Rd=L

cosh L= 2Rdð Þð Þ þ k=Rdð Þ sinh L= 2Rdð Þð Þ :

ð30bÞ

Allowing for the dependence of characteristic length Rd

on average polarization, Eqs. 30a and 30b is the

transcendental equation for P determination. For the case

of no external field, E0 = 0, the equation (30a) could be

rewritten in a more convenient way:

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a� 1�N

e0eb
1� f L;Rdð Þ
� �

� N
e0eb

b 1þ 2 1� f L;Rdð Þ
� �� �

vuut ð30cÞ

However, in contrast to the case of in-plane polarization,

the factor e0eb drastically changes the situation (but it

is not the case for ferromagnetic media). Since

e0eb aþ 3bP
2

� �
� 1 for the most of ferroelectrics, the

following approximation is valid with high accuracy:

Rd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e0ebg

e0eb aþ 3bP
2

� �
þ 1

s
� Rd0 ¼

ffiffiffiffiffiffiffiffiffiffi
e0ebg
p ¼ const

ð31Þ

Using the approximation (31) Eq. 30c could be reduced to

the following relation:

P �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a� 2g

kþRd0ð Þ
1

eb
~HþL
� 1

e0

~H
eb

~HþL

b 1þ 4e0ebg
kþRd0ð ÞL

� �
vuuut ð32Þ

Here ~H ¼ H1

	
eg1 þ H2

	
eg2 is the effective thickness of

dead layers (or effective screening radius of electrodes),

responsible for imperfect screening. At ~H ¼ 0 Eq. 32 gives

well known results for the ferroelectric films with out-of-

plane polarization [47, 49]. In Eq. 32 we considered the

limit L � Rd0, which is valid for the most of films, since

Rd0 is of the order of lattice constant, and used relation

1� f L;Rd0ð Þ � 2e0ebg
kþRd0ð ÞL :
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It should be stressed that right hand side of Eq. 32 is

independent on average polarization; in fact it is closed

form solution of the problem. The numerator of this

expression were obtained earlier by Glinchuk et al. [53]

and Tagantsev et al. [52] in slightly different forms and

using different methods. The consequences and the other

physical properties of the considered system could be

found in these references. Here we address only one issue,

recently deserving especial attention, namely the value of

depolarization field in the film center:

Ed
3 z ¼ 0ð Þ ¼ �P3 z ¼ 0ð Þ þ P

e0eb
� P

e0eb

~H
~H þ L=eb

� �P
2g

kþ Rd0ð ÞL�
P

e0

~H

eb
~H þ L

ð33Þ

Here we took into account that exp �L=2Rdð Þ �
1; f z ¼ 0; L;Rdð Þ � 1 and Eq. 29a could be rewritten as

P3ðzÞ ¼ P f z; L;Rdð Þ
	

f L;Rdð Þ: It is interesting to note, that

Tagantsev et al. [52] dropped the first term (replacing

Ed
3 z ¼ 0ð Þ with average value Ed

3) while considered the

renormalization �a� 2g
kþRd0ð Þ

1
eb

~HþL
� 1

e0

~H
eb

~HþL
with both

additives dependent on film thickness.

The exact but very cumbersome solution of the problem

is also available in terms of elliptic integrals, while the

numerical solution could be get by the phase field modeling

(see e.g. [54]).

Appendix 3: critical temperature dependence

on the film thickness

Expansion of left-hand side of Eq. 6a near the point L�
Rc0 gives the following

L

2Rc0

� Rc0

k
ð34aÞ

which is obviously valid for k ? ?.

Expansion near the pole of tan function L� pRc0ð Þ is

(see e.g. [55])

L=Rc0ð Þ
p=2ð Þ2� L=2Rc0ð Þ2

� Rc0

k
: ð34bÞ

which is relevant at k ? 0.

Now the Eqs. 34a and 34b could be resolved via cor-

relation radius and temperature and it allows one to derive

the transition temperature in the explicit form. Namely, at

k ? ?:

aþ 2g

Lk
¼ 0 ð35aÞ

and at k ? 0:

aþ p2g

4Lkþ L2
¼ 0 ð35bÞ

Pade approximation is

aþ 2p2g

p2Lkþ 2L2
¼ 0 ð36Þ

Appendix 4: polarization distribution in ferroelectric

nanotubes

In the case of the ferroelectric nanotubes the system (11)

should be modified to take into account boundary condition

on the inner surface of the tube as

aP3 þ bP3
3 � g 1

q
o

o q q o
o q

� �
P3 ¼ E0

P3 � k1
dP3

dq

� ����
q¼R1

¼ 0 P3 þ k2
dP3

dq

� ����
q¼R2

¼ 0

8<
: ð37Þ

As in previous sections we will look for the solution in the

form P3 qð Þ ¼ Pþ p qð Þ; where P ¼ 2
R R2

R1
P3 qð Þqdq

.
R2

2 � R2
1

� �
is the averaged polarization, p is the deviation,

regarded small in ferroelectric phase: p qð Þj j � P
�� ��: So,

linearized problem (37) acquires the form:

aþ 3bP
2

� �
p� g o2

oq2 þ 1
q

o
oq

� �
p ¼ E0 � aPþ bP

3
� �

;

p� k1
op
oq

� ����
q¼R1

¼ �P; pþ k2
op
oq

� ����
q¼R2

¼ �P

8<
:

ð38Þ

The solution of the problem (38) has the form:

P3ðqÞ ¼
E0 þ 2bP

3

aþ 3bP
2

 !
t q;R1;R2;R0ð Þ; ð39aÞ

t q;R1;R2;R0ð Þ

¼ 1þ
I0

q
R0

� �
K0

R1

R0

� �
�K0

R2

R0

� �
þ k1

R0
K1

R1

R0

� �
þ k2

R0
K1

R2

R0

� �� �

Det

þ
K0

q
R0

� �
�I0

R1

R0

� �
þ I0

R2

R0

� �
þ k1

R0
I1

R1

R0

� �
þ k2

R0
I1

R2

R0

� �� �

Det
;

ð39bÞ

Det ¼ I0

R1

R0

� �
� k1

R0

I1

R1

R0

� �� �
K0

R2

R0

� �
� k2

R0

K2

R2

R0

� �� �

� I0

R2

R0

� �
þ k2

R0

I1

R2

R0

� �� �
K0

R1

R0

� �
þ k1

R0

K1

R1

R0

� �� �

ð39cÞ

The equation for the average polarization could be found

after the averaging of (39a) in the following form

P ¼ E0 þ 2bP
3

aþ 3bP
2

 !
t R1;R2;R0ð Þ; ð40aÞ
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