47 research outputs found

    Original Studies Outcomes of a Dedicated Stent in Coronary Bifurcations with Large Side Branches: A Subanalysis of the Randomized TRYTON Bifurcation Study

    Get PDF
    Objectives: To examine the benefit of the Tryton dedicated side branch (SB) stent compared with provisional stenting in the treatment of complex bifurcation lesions involving large SBs. Background: The TRYTON Trial was designed to evaluate the utility of a dedicated SB stent to treat true bifurcation lesions involving large (!2.5 mm by visual estimation) SBs. Patient enrolled in the trial had smaller SB diameters than intended (59% SB 2.25 mm by Core Lab QCA). The TRYTON Trial did not meet its primary endpoint due to an increased rate of peri-procedural myocardial infarctions (MIs). Methods: The TRYTON Trial randomized 704 patients to the Tryton SB stent with main vessel DES versus provisional SB treatment with main vessel DES. The rates of the primary end point of target vessel failure and the secondary powered end point of angiographic percent diameter stenosis in the SB at 9 months were assessed and compared between the two treatment strategies among patients with a SB !2.25 mm diameter at Additional Supporting Information may be found in the online version of this article. Catheterization and Cardiovascular Interventions 00:00-00 V C 2015 Wiley Periodicals, Inc

    Expression profiling of clonal lymphocyte cell cultures from Rett syndrome patients

    Get PDF
    BACKGROUND: More than 85% of Rett syndrome (RTT) patients have heterozygous mutations in the X-linked MECP2 gene which encodes methyl-CpG-binding protein 2, a transcriptional repressor that binds methylated CpG sites. Because MECP2 is subject to X chromosome inactivation (XCI), girls with RTT express either the wild type or mutant MECP2 in each of their cells. To test the hypothesis that MECP2 mutations result in genome-wide transcriptional deregulation and identify its target genes in a system that circumvents the functional mosaicism resulting from XCI, we performed gene expression profiling of pure populations of untransformed T-lymphocytes that express either a mutant or a wild-type allele. METHODS: Single T lymphocytes from a patient with a c.473C>T (p.T158M) mutation and one with a c.1308-1309delTC mutation were subcloned and subjected to short term culture. Gene expression profiles of wild-type and mutant clones were compared by oligonucleotide expression microarray analysis. RESULTS: Expression profiling yielded 44 upregulated genes and 77 downregulated genes. We compared this gene list with expression profiles of independent microarray experiments in cells and tissues of RTT patients and mouse models with Mecp2 mutations. These comparisons identified a candidate MeCP2 target gene, SPOCK1, downregulated in two independent microarray experiments, but its expression was not altered by quantitative RT-PCR analysis on brain tissues from a RTT mouse model. CONCLUSION: Initial expression profiling from T-cell clones of RTT patients identified a list of potential MeCP2 target genes. Further detailed analysis and comparison to independent microarray experiments did not confirm significantly altered expression of most candidate genes. These results are consistent with other reported data

    The Role of MeCP2 in Brain Development and Neurodevelopmental Disorders

    Get PDF
    Methyl CpG binding protein-2 (MeCP2) is an essential epigenetic regulator in human brain development. Rett syndrome, the primary disorder caused by mutations in the X-linked MECP2 gene, is characterized by a period of cognitive decline and development of hand stereotypies and seizures following an apparently normal early infancy. In addition, MECP2 mutations and duplications are observed in a spectrum of neurodevelopmental disorders, including severe neonatal encephalopathy, X-linked mental retardation, and autism, implicating MeCP2 as an essential regulator of postnatal brain development. In this review, we compare the mutation types and inheritance patterns of the human disorders associated with MECP2. In addition, we summarize the current understanding of MeCP2 as a central epigenetic regulator of activity-dependent synaptic maturation. As MeCP2 occupies a central role in the pathogenesis of multiple neurodevelopmental disorders, continued investigation into MeCP2 function and regulatory pathways may show promise for developing broad-spectrum therapies

    A Non-Coding RNA Within the Rasgrf1 Locus in Mouse Is Imprinted and Regulated by Its Homologous Chromosome in Trans

    Get PDF
    BACKGROUND: Rasgrf1 is imprinted in mouse, displaying paternal allele specific expression in neonatal brain. Paternal expression is accompanied by paternal-specific DNA methylation at a differentially methylated domain (DMD) within the locus. The cis-acting elements necessary for Rasgrf1 imprinting are known. A series of tandem DNA repeats control methylation of the adjacent DMD, which is a methylation sensitive enhancer-blocking element. These two sequences constitute a binary switch that controls imprinting and represents the Imprinting Control Region (ICR). One paternally transmitted mutation, which helped define the ICR, induced paramutation, in trans, on the maternal allele. Like many imprinted genes, Rasgrf1 lies within an imprinted cluster. One of four noncoding transcripts in the cluster, AK015891, is known to be imprinted. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that an additional noncoding RNA, AK029869, is imprinted and paternally expressed in brain throughout development. Intriguingly, any of several maternally inherited ICR mutations affected expression of the paternal AK029869 transcript in trans. Furthermore, we found that the ICR mutations exert different trans effects on AK029869 at different developmental times. CONCLUSIONS/SIGNIFICANCE: Few trans effects have been defined in mammals and, those that exist, do not show the great variation seen at the Rasgrf1 imprinted domain, either in terms of the large number of mutations that produce the effects or the range of phenotypes that emerge when they are seen. These results suggest that trans regulation of gene expression may be more common than originally appreciated and that where trans regulation occurs it can change dynamically during development

    SMA CARNI-VAL TRIAL PART II: A Prospective, Single-Armed Trial of L-Carnitine and Valproic Acid in Ambulatory Children with Spinal Muscular Atrophy

    Get PDF
    Multiple lines of evidence have suggested that valproic acid (VPA) might benefit patients with spinal muscular atrophy (SMA). The SMA CARNIVAL TRIAL was a two part prospective trial to evaluate oral VPA and l-carnitine in SMA children. Part 1 targeted non-ambulatory children ages 2–8 in a 12 month cross over design. We report here Part 2, a twelve month prospective, open-label trial of VPA and L-carnitine in ambulatory SMA children.This study involved 33 genetically proven type 3 SMA subjects ages 3–17 years. Subjects underwent two baseline assessments over 4–6 weeks and then were placed on VPA and L-carnitine for 12 months. Assessments were performed at baseline, 3, 6 and 12 months. Primary outcomes included safety, adverse events and the change at 6 and 12 months in motor function assessed using the Modified Hammersmith Functional Motor Scale Extend (MHFMS-Extend), timed motor tests and fine motor modules. Secondary outcomes included changes in ulnar compound muscle action potential amplitudes (CMAP), handheld dynamometry, pulmonary function, and Pediatric Quality of Life Inventory scores.Twenty-eight subjects completed the study. VPA and carnitine were generally well tolerated. Although adverse events occurred in 85% of subjects, they were usually mild and transient. Weight gain of 20% above body weight occurred in 17% of subjects. There was no significant change in any primary outcome at six or 12 months. Some pulmonary function measures showed improvement at one year as expected with normal growth. CMAP significantly improved suggesting a modest biologic effect not clinically meaningful.This study, coupled with the CARNIVAL Part 1 study, indicate that VPA is not effective in improving strength or function in SMA children. The outcomes used in this study are feasible and reliable, and can be employed in future trials in SMA

    Alternating hemiplegia of childhood: Retrospective genetic study and genotype-phenotype correlations in 187 subjects from the US AHCF registry

    Get PDF
    Mutations in ATP1A3 cause Alternating Hemiplegia of Childhood (AHC) by disrupting function of the neuronal Na+/K+ ATPase. Published studies to date indicate 2 recurrent mutations, D801N and E815K, and a more severe phenotype in the E815K cohort. We performed mutation analysis and retrospective genotype-phenotype correlations in all eligible patients with AHC enrolled in the US AHC Foundation registry from 1997-2012. Clinical data were abstracted from standardized caregivers' questionnaires and medical records and confirmed by expert clinicians. We identified ATP1A3 mutations by Sanger and whole genome sequencing, and compared phenotypes within and between 4 groups of subjects, those with D801N, E815K, other ATP1A3 or no ATP1A3 mutations. We identified heterozygous ATP1A3 mutations in 154 of 187 (82%) AHC patients. Of 34 unique mutations, 31 (91%) are missense, and 16 (47%) had not been previously reported. Concordant with prior studies, more than 2/3 of all mutations are clustered in exons 17 and 18. Of 143 simplex occurrences, 58 had D801N (40%), 38 had E815K (26%) and 11 had G937R (8%) mutations. Patients with an E815K mutation demonstrate an earlier age of onset, more severe motor impairment and a higher prevalence of status epilepticus. This study further expands the number and spectrum of ATP1A3 mutations associated with AHC and confirms a more deleterious effect of the E815K mutation on selected neurologic outcomes. However, the complexity of the disorder and the extensive phenotypic variability among subgroups merits caution and emphasizes the need for further studies

    A novel hypomorphic MECP2 point mutation is associated with a neuropsychiatric phenotype.

    No full text
    The MECP2 gene on Xq28 encodes a transcriptional repressor, which binds to and modulates expression of active genes. Mutations in MECP2 cause classic or preserved speech variant Rett syndrome and intellectual disability in females and early demise or marked neurodevelopmental handicap in males. The consequences of a hypomorphic Mecp2 allele were recently investigated in a mouse model, which developed obesity, motor, social, learning, and behavioral deficits, predicting a human neurobehavioral syndrome. Here, we describe mutation analysis of a nondysmorphic female proband and her father who presented with primarily neuropsychiatric manifestations and obesity with relative sparing of intelligence, language, growth, and gross motor skills. We identified and characterized a novel missense mutation (c.454C\u3eG; p.P152A) in the critical methyl-binding domain of MeCP2 that disrupts MeCP2 functional activity. We show that a gradient of impairment is present when the p.P152A mutation is compared with an allelic p.P152R mutation, which causes classic Rett syndrome and another Rett syndrome-causing mutation, such that protein-heterochromatin binding observed by immunofluorescence and immunoblotting is wild-type \u3e P152A \u3e P152R \u3e T158 M, consistent with the severity of the observed phenotype. Our findings provide evidence for very mild phenotypes in humans associated with partial reduction of MeCP2 function arising from subtle variation in MECP2
    corecore