23 research outputs found

    Hip fracture evaluation with alternatives of total hip arthroplasty versus hemiarthroplasty (HEALTH): protocol for a multicentre randomised trial

    Get PDF
    Introduction: Hip fractures are a leading cause of mortality and disability worldwide, and the number of hip fractures is expected to rise to over 6 million per year by 2050. The optimal approach for the surgical management of displaced femoral neck fractures remains unknown. Current evidence suggests the use of arthroplasty; however, there is lack of evidence regarding whether patients with displaced femoral neck fractures experience better outcomes with total hip arthroplasty (THA) or hemiarthroplasty (HA). The HEALTH trial compares outcomes following THA versus HA in patients 50 years of age or older with displaced femoral neck fractures. Methods and analysis: HEALTH is a multicentre, randomised controlled trial where 1434 patients, 50 years of age or older, with displaced femoral neck fractures from international sites are randomised to receive either THA or HA. Exclusion criteria include associated major injuries of the lower extremity, hip infection(s) and a history of frank dementia. The primary outcome is unplanned secondary procedures and the secondary outcomes include functional outcomes, patient quality of life, mortality and hiprelated complications—both within 2 years of the initial surgery. We are using minimisation to ensure balance between intervention groups for the following factors: age, prefracture living, prefracture functional status, American Society for Anesthesiologists (ASA) Class and centre number. Data analysts and the HEALTH Steering Committee are blinded to the surgical allocation throughout the trial. Outcome analysis will be performed using a χ2 test (or Fisher’s exact test) and Cox proportional hazards modelling estimate. All results will be presented with 95% CIs. Ethics and dissemination: The HEALTH trial has received local and McMaster University Research Ethics Board (REB) approval (REB#: 06-151). Results: Outcomes from the primary manuscript will be disseminated through publications in academic journals and presentations at relevant orthopaedic conferences. We will communicate trial results to all participating sites. Participating sites will communicate results with patients who have indicated an interest in knowing the results. Trial registration number: The HEALTH trial is registered with clinicaltrials.gov (NCT00556842)

    Effectiveness of manual therapies: the UK evidence report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this report is to provide a succinct but comprehensive summary of the scientific evidence regarding the effectiveness of manual treatment for the management of a variety of musculoskeletal and non-musculoskeletal conditions.</p> <p>Methods</p> <p>The conclusions are based on the results of systematic reviews of randomized clinical trials (RCTs), widely accepted and primarily UK and United States evidence-based clinical guidelines, plus the results of all RCTs not yet included in the first three categories. The strength/quality of the evidence regarding effectiveness was based on an adapted version of the grading system developed by the US Preventive Services Task Force and a study risk of bias assessment tool for the recent RCTs.</p> <p>Results</p> <p>By September 2009, 26 categories of conditions were located containing RCT evidence for the use of manual therapy: 13 musculoskeletal conditions, four types of chronic headache and nine non-musculoskeletal conditions. We identified 49 recent relevant systematic reviews and 16 evidence-based clinical guidelines plus an additional 46 RCTs not yet included in systematic reviews and guidelines.</p> <p>Additionally, brief references are made to other effective non-pharmacological, non-invasive physical treatments.</p> <p>Conclusions</p> <p>Spinal manipulation/mobilization is effective in adults for: acute, subacute, and chronic low back pain; migraine and cervicogenic headache; cervicogenic dizziness; manipulation/mobilization is effective for several extremity joint conditions; and thoracic manipulation/mobilization is effective for acute/subacute neck pain. The evidence is inconclusive for cervical manipulation/mobilization alone for neck pain of any duration, and for manipulation/mobilization for mid back pain, sciatica, tension-type headache, coccydynia, temporomandibular joint disorders, fibromyalgia, premenstrual syndrome, and pneumonia in older adults. Spinal manipulation is not effective for asthma and dysmenorrhea when compared to sham manipulation, or for Stage 1 hypertension when added to an antihypertensive diet. In children, the evidence is inconclusive regarding the effectiveness for otitis media and enuresis, and it is not effective for infantile colic and asthma when compared to sham manipulation.</p> <p>Massage is effective in adults for chronic low back pain and chronic neck pain. The evidence is inconclusive for knee osteoarthritis, fibromyalgia, myofascial pain syndrome, migraine headache, and premenstrual syndrome. In children, the evidence is inconclusive for asthma and infantile colic.</p

    Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012

    Get PDF
    OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients

    The Medical Literature Users&apos; Guides to the Medical Literature VIII. How to Use Clinical Practice Guidelines A. Are the Recommendations Valid? your patient want to know

    No full text
    CLINICAL SCENARIO cardiovascular problems, but her mother rates, and the incidence of endometrial, you are relieved to find that the last had a mastectomy at age 57 for postcervical, and breast cancer. Knowing patient in your busy primary care clinic menopausal breast cancer. You give the that &quot;practice guideline&quot; is among the is a previously well 48-year-old same general advice you have offered publication types listed by Grateful Med, with acute dysuria. ~h~~~ has been no similar patients in the past, but suggest you reason that clinical practice guidepolydipsia, fever, or hematufia; the that the matter be discussed at greater lines might address multiple HRT-rephysical examination reveals suprapulength when she returns after complet-lated outcomes at one time, and thus bit tenderness; and urinalysis pying the antibiotic treatment. Later, as provide you with the most efficient acuria but no casts. you arrange cultures YOU lament doorknob consults, you are cess to the best summary or summaries antibiotic treatment for a lower uriirritated when a colleague asserts that of the available data. A repeat search nary tract infection. on her way out the your primary advice about prophylactic with the new publication type yields five door, your patient observes that her hormone replacement therapy (HRT) citations. Two of these are &quot;technical friend has just started taking &quot;female was wrong and that you should have bulletins&quot; of the American College of hormones; and she wonders whether recommended exactly the opposite. You Obstetricians and Gynecologists,&apos;2 one she should too. H~~ menstrual periods resolve to revisit this disagreement, is written for surgeons,3 one is a recent stopped 6 months ago and she has never armed with the best evidenceguideline from the American College of had cervical, ovarian, uterine, breast, or Physicians (ACP)? and the last is a com-THE SEARCH mentary on the ACP g~ideline.~ Observing that the ACP guideline is published begin by using Med to together with a systematic overview of look for a recent overview because many the ,,idence supporting its recornmen

    The Philosophy of Evidence-Based Principles and Practice in Nutrition

    No full text
    The practice of evidence-based nutrition involves using the best available nutrition evidence, together with clinical experience, to conscientiously work with patients’ values and preferences to help them prevent (sometimes), resolve (sometimes), or cope with (often) problems related to their physical, mental, and social health. This article outlines the 3 fundamental principles of evidence-based practice as applied to the field of clinical nutrition. First, optimal clinical decision making requires awareness of the best available evidence, which ideally will come from unbiased systematic summaries of that evidence. Second, evidence-based nutrition provides guidance on how to decide which evidence is more or less trustworthy—that is, how certain can we be of our patients’ prognosis, diagnosis, or of our therapeutic options? Third, evidence alone is never sufficient to make a clinical decision. Decision makers must always trade off the benefits with the risks, burden, and costs associated with alternative management strategies, and, in so doing, consider their patients’ unique predicament, including their values and preferences
    corecore