22 research outputs found

    Quantum flutter of supersonic particles in one-dimensional quantum liquids

    Full text link
    The non-equilibrium dynamics of strongly correlated many-body systems exhibits some of the most puzzling phenomena and challenging problems in condensed matter physics. Here we report on essentially exact results on the time evolution of an impurity injected at a finite velocity into a one-dimensional quantum liquid. We provide the first quantitative study of the formation of the correlation hole around a particle in a strongly coupled many-body quantum system, and find that the resulting correlated state does not come to a complete stop but reaches a steady state which propagates at a finite velocity. We also uncover a novel physical phenomenon when the impurity is injected at supersonic velocities: the correlation hole undergoes long-lived coherent oscillations around the impurity, an effect we call quantum flutter. We provide a detailed understanding and an intuitive physical picture of these intriguing discoveries, and propose an experimental setup where this physics can be realized and probed directly.Comment: 13 pages, 9 figure

    Finding the engram.

    Get PDF
    Many attempts have been made to localize the physical trace of a memory, or engram, in the brain. However, until recently, engrams have remained largely elusive. In this Review, we develop four defining criteria that enable us to critically assess the recent progress that has been made towards finding the engram. Recent \u27capture\u27 studies use novel approaches to tag populations of neurons that are active during memory encoding, thereby allowing these engram-associated neurons to be manipulated at later times. We propose that findings from these capture studies represent considerable progress in allowing us to observe, erase and express the engram
    corecore